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7-1. GEOMETRICAL AND GASDYNAMICAL PARAMETERS OF THE
LATTICES; FUNDAMENTALS OF FLOW
THROUGH LATTICES

The transformation of energy in a stage of a turbomechine is a re-
sult of the interaction of the gas flow with the stationary and rotat-
ing blades, which form the guide and impeller blade systems.

The lattices of a turbine in the general case represent systems of
blades of the same shape uniformly erranged on a certaln surface of rev-
olution. A particular case of a three-dimensional lattice is an annular
lattice with radial blades arranged between coaxial cylindrical surfaces
of revolution. -

In flowing through the lattice, the velocity and direction of the
gas flow are changed, and a reaction force is thereby produced on the
lattice. On the rotating lattices of a turbine this force performs
work; the rotating lattices of compressors, on the contrary, increase
the energy of the gas flowing through them. In stationary lattices an
energy interchange with the surrounding medium does not occur; in this
case the lattices bring about the required transformations of kinetic
energy (velocity) and the deflection of the flow.

Depending on the flow conditions and the corresponding geometrical
parameters of the blade profile, three fundamental types of lattices are
distinguished:

(a) Converging flow type: the nozzle or guide (stationary) vanes
and the reaction (rotating) lattices of turbines

¥"pechnical Gesdynamics.” (Tekhnickeskaia gazodinemika) ch. 7,
1953, pp. 312-420. -
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(b) Action or impulse (rotating) lattices of turbines

(c) Diffuser: guide (stationary) and working (rotating) lattices
of compressors. -

Depending on the generel direction of motion of.the gas with re-
spect to the axls of rotation, the lettices are divided into axial and
radial types. In certain machine designs the gas flow moves at an
angle to the axis of rotation (diagonal lattices).

The most important geometrical parsmeters of -an annular (cylindri-
cal) lattice are‘the mean diameter &, the length (height of the blade
1, the width of the lattice B, the pitch of the blades on the mean 4i-
ameter t, the chord b, and other blade profile parameters (fig. 7-1).

There exist several methods of specifying the shape of a blade pro-
file. The universal method of coordinates (fig. 7-2(a)) has great ad-
vantages. The methods shown in figures 7-2(b) and (c) are based on the
idea of the mean line of & profile; the mean line msy represent the geo-
metric loci of the centers of inscribed circles or the centers of the
chords connecting the points of tangency. The mean line is defined by
coordinates, and the thickness distribution about the mean line is then
independently given. TFor specifyling the profiles of fturbine lattices,
conslsting most frequently of thick, sharply curved profiles with small
pltch, the methods shown in figure 7-2(b) and (c¢) are inconvenient. The
determination of the fundamental dimensions, the construction of the pro-
file, or its checking require complicated graphical work. The most wide-
spread method of constructing the profile from a small number of adjoin-
ing arcs of circles and segments of straight lines (fig. 7-2(d)) is ar-
bitrary and tedious. '

If the ratio of the mean diameter of the lattice d +to the height
of the blade 1 1is large, the lattice may, for the purpose of slimplify-
ing the problem, be considered as a straight-row lattice. The shape of
the space between the blades along the helght mey then be considered as
constant. In the simplest case, assuming that the diemeter of the lat-
tice and the number of the blades increase without limit, we obtain a
plane infinite lattice (fig. 7-1(c)).

The passage from the cylindrical to the plane lattice is effected
in the following manner: We pasg two coaxial cylindrical sections of
the annular lattice through the middle diameter d and through the di-
ameter 4 + Ad. Assuming Ad to be small, we develop the resulting
annular lattice of very small height on a plene. Increasing the number
of blades to infinity, we obtain the plane infinite lattice shown in
figure 7-1(c).

L98¢
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The assumption of plane cross sections, that is, used as the basis
of the investigations and computations of modern turbomschines, was
fruitfully applied by N. E. Joukowsky in 1830. The value of this as~
sumption has been confirmed by numerous experiments.

The geometricel characteristics of lattices are usually given in
nondimensional form. For exsmple, the relative pitch of the profile is
determined by the formulas

= _ 1t - T
"G.==F or 'tBﬂg

The relative height (or length) of the blade,

= 1
In certain cases in investigating the three~dimensionsl flow in & lat-
tice, it is more convenient to define the relative height as

Z -.._.._ -
T=%

where a5 1s the width of the minimum cross section of the passage
(fig. 7-1).

A rectilinear lattice is referred to as & system of coordinates x,
¥s; Zz where the direction x is termed the axis of the lattice (fig.
7-1(b)). All profiles must coincide in the translational displecement
along the axis of the lattice. The pitech %t of the lattice 1s equal to
the distence hetween any two corresponding points.

For a given profile shape, the shape of the interblade passage of
the lattice depends, in addition to the pitech, on the angle By, which
is defined as the angle between the axis of the lattice and the chord
of the profile (fig. 7-1(c)). In the practical construction of turbine
lattices, the position of a profile in the lattice is often specified by
the geometrical angle of the exit edge Bon (the angle between the tan-

gent to the mean line at the trailing edge and the sxis of the lattice). -
In certain cases, for a stralght-backed profile, the angle Bon 1is S -

measured from the direction of the suction surface at the trailing edge.’

In the design of the blade lattices it is necessary, besides satis-~
fying a number of structural requirements, to ensure that the given
transformation of energy obtains with minimum losses. A detailled study
of the flow process over the blades of the lattice is thus required.

One of the important problems 1ls that of establishing the effect of the
shape of the blades and of other geometric parameters of the lattice on
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the mechanical efficiency over a wide range of Mach and Reynolds numbers
and inlet flow angles.

The flow process of a geas through the lattices of s turbomachine is
&8 very complicated hydromechanlcal process. The theoretical solution of
the corresponding problem of the unsteady three-dimensional motion of =&
viscous compressible fluld presents great difficulties. A good approach
to the solution of this problem, as in general to the solution of most
technical problems, consists of the investigation of simplified models

which retain most of the essential characteristics of the actual process.

Succeeding analyses then develop the effect of secondary factors.

At the present time the most highly developed theory 1s that of the
steady two-dimensionel flow through the lattice of an ideal incompressi-
ble fluid. BSuch a flow may be considered as the llmiting case of the
actual flow in a lattice st small flow velocities (small Mach numbers,
M < 0.3 - 0.5) and with small effect of the viscosity (large Reynolds

numbers, Re > 10% - 105).

Within the frame of such & simplified scheme it is possible to es-

tablish the fundamental characteristics of a potential flow in a lattice.

However, the solutions obtalnable with these limltatichs require an es-
sential correction. The effects of the viscosity and of the compressi-
bility must be eveluated by theoretical and experimental methods. The
results of other tests permit evaluating certaln features of the three-
dimensional flow in lattices and obtaining the characteristics of the
lattices required for the thermodynemic computation of the stages of the

turbomachine.

Let us consider several features of & plane potentisl flow of an
1deal incompressible fluld for the case of the flow over the blades of
a reaction turbine (fig. 7-3). On account of the repeated character of
the flow, it is sufficient to study the flow in a single interblade pas-
sage or the flow about & single blade. In figure 7-3(a) the continuous
curves represent the streamlines ¥ = constant; the dotted curves repre-
sent the equipotential lines & = constant, normel to the streamlines.

A sufficiently dense network of these lines gives a good characteriza-
tion of the flow. The velocity ¢ at any polnt of the flow is equal to

a a
cna-gls-a-r-f (7-1)

where S and n sare the curvilinear distances along the streamlines
and equipotential lines, respectively.

19R%



3867

NACA T™ 1393 ' 5

The differentials may be approximetely replaced by flnite incre-
ments, and we thus obtain
A® AY

C = o -

2S &n

If AP = AY = constant &at each point, then AS = An. In this case, the
individual elements of the orthogonal network of lines, ® = constant

and ¥ = constant, become squares in the limit (as AS -0 and An -+ 0).
The flow network of an ideal incompressible fluld therefore is termed a
square network. _ e

At subsonic velocities, the losses in availsble energy are produced
by the effect of viscosity, by periodic fluctuations of the flow, and by
the high degree of turbulence of the flow. When the velocities are near-
1y sonic or when they are supersonic, the losses are caused by the irre-
versible process of the discontinuous energy transformation. The magni-
tude of the losses determines, to a large extent, the mechanical effi-
ciency of the turbomachine. e e

The hodograph plane (fig. 7-3(b)) provides snother important method
of representing the flow. At each point along & streamline or equipo-
tential lines (fig. 7-3(a)) the velocity has & definite magnitude and
direction. When these velocity vectors associated with a given stream-
line or equipotential line are drawn from a common origin and their ter-
mini are connected (fig. 7-3(b)), the corresponding streamline or equi-
potential line is estsblished in the hodograph plane. The streamlines
and potential lines thus drawn also form a square network. This network
may now be conceived to represent a flow in the usual sense. The stream-
1ines that originally represented the blades are the boundaries for the
new flow. The new flow itself is produced by a so-called vortex-source
and a vortex-gink. The vortex source is located at the end of the ve-
locity vector e (the velocity at an infinite distance ahead of the

lattice). The vortex~sink is at the end of the vector co (the velocity

at an infinite distance behind the lattice). The origin O and the
terminil of cy eand cg form the velocity triangle of the lattice. ™7

From the equality of the flow rate shead of and behind the lattice,
cqt sin By = cgt sin By

it follows that the projections of the velocities ¢y and co on the

normal to the axis of the lattice are equel or that the straight line
passing through the ends of the vectors ¢ and cp 1in the plane of

the hodograph is parallel to the exis of the lattice. Considering the
velocity hodograph of the lattice, we may arrive at the conclusion that,
at points on the suction surface of the blade where the tangent to the
blade surface is parallel to the upstream and downstream flow directions,
the corresponding velocities should be greater than c; sand cgp,
respectively.
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Of great interest 1s the distributioh of the velocity or pressure
on the surface of the blade. Figure 7-3(c) shows the approximate dis-
tribution of the relative veloeities T = c/cz and relstive pressures

o= (p -~ Pz)/% pcg = 1 - Ez as a functlon of the distance 5 along

the profile. If the magnitude cy and the direction @7 of the veloc-

ity at infinity shead of the profile are known and slso the position of
the point of convergence of the flow Op (at the tralling edge), the

flow through a given lattice 1s determined. In the cage of an ideal in-
compressgible fluid, a change in the magnitude of the veloclity cy does

not alter the shape of the streamlines or equipotential lines. Neither
does it alter the relative velocity € or the relative pressure 7.

At Pinite distances from the lattice, the field of velocities and
pressures is not uniform. The streamlines (for By % 900) are wave

shaped, and their shape is generslly different from that at infinity;
moreover, it periodically varies along the cascade axis. In correspond-
ence with the conditions of continulty and in the absence of vorticity,
the mean velocity elong eny line ab (fig. 7-3(a)) between two points
separated by an integral number of periods t of the lattice 1s equal
to the velocity at infinity. One of the streamlines approaching the
leading edge of the profile actually branches at the leading edge. At
the branching point O (also called the entry point) the velocity be-

comee equal to zero and the pressure is at & maximum. Starting from the
branch point, at which S = 0 (fig. 7-3(c)), the velocity along the pro-
file sharply increases. Depending on the shape of the leading edge and
also on the direction of the inlet velocity (inlet angle Bl), the ve-
locity near the branch point may have one or two maxima. At the convex
side of the profile the velocity is on the average greater, and the pres-
gure less, than on its concave side. The general character of the veloc-
ity distribution over the profile may be evaluated by considering the
width of the interblade passage and the curvature of the profile contour.
In particular, e narrowling of the passage, characteristic of a turbine
lattice of the reaction type, leads to an acceleration of the flow; in

an impulse turbine having approximetely constant passage wldth and curva-
ture, the veloclty and pressure change only slightly in the direction of
flow (fig. 7-4); in s compressor lattice, the interblade passage widens
and the veloclty correspondingly decreases (fig. 7-44).

An increase in the curvature of the convex parts of the blade leads
to an increase in velocity, and vice versa. For a discomtinuous change
in curvature at the points of Junction of arcs of circles, Ffor example,
the theoretical curves of the veloclty and pressure distributions have
an infinite slope. At projecting angles of the profile, the velocclty
theoretically increases to infinity, while at internal angles 1t drops

to zero.

raoqQe
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In view of the fact that these characteristics in the distribution
of the veloclty can not exist in an actuasl flow, the blade contours of
modern lattices are designed with a smoothly changing curvature.

Near both the leading edge and a trailing edge of finite thickness,l
the velocity may have one or two maxima; at the actual leading and trail-
ing edges, the velocity must drop to zero. The actual trailing edge is
the point of the tall where the curvature is greatest. At a large dis-
tance behind the lattice, the direction of flow is determined by the

Figure 7-5 shows the approximate effect of the inlet angle By, the
pitech +t, and the blede setting angle By on the distribution of the

relative veloclty over a blade of the reaction-type turbine lattice. A
change in the angle By (fig. 7-5(a)) causes the branch point 0y to be

displaced along the profile. The design entry angle to the lattice may
be considered as the angle for which the point Oy coincides with the

point of meximum curvature at the leading edge of the profile. In this
case maximumms of the veloclty at the leading edge are elther sabsent or
are least sharply. expressed. With a decrease in the entry angle, the
branch point is shifted toward the concave part of the profile, and the
velocity in the flow around the leading edge sharply increases. The
vector to the exit velocity c2 +turns in the same direction as the vec-

tor of the inlet veloclty; for example, on decreasing the angle B1

from its design value, the exit angle B2 increamses. It should be re-
marked that the effect of inlet flow angle on outlet flow angle is very
small in conventional turbine lattices. When the piltech t 1is increased
by a translational shift of the profile (fig. 7-5(b)) while keeping ‘the
inlet flow angle @§; constant, the branch point 0y is slightly dis-

placed toward the concave part of the profile; eorrespondingly, the
velocity distribution at the leading edge changes somewhat. On the con-
vex side of the blade the velocity increases, while on the concave side
it decreases. The exit angle P, increases. A chenge in the setting
angle of the profiles (obtained by rotating them while maintaining the
game pitch and inlet flow angle) changes the exit angle B5. The change
in P2 1is practically the seme as the change in setting angle (fig.
7-5{(c)). On rotating the profiles in the direction of decrease of the
exlt angle B5, the corresponding velocities on the profile decrease;
the branch point 0O 1s displaced toward the concave part of the pro-

file, in connection with which the velocity distribution at the leading
edge changes in a way similar to that for a decrease of the inlet angle
By

1The case of an infinitely thin édge is not consldered because it
has no practical significance. _ ~
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When the sgtatic pressure on a profile lncreases in the direction of
flow (such s in diffuser elements) the flow of a real viscous fluid mey
separate from the blade. Experience shows that the statlc pressure is
constant over parts of the profile behind the point of separation. The
features of & flow with separation can be approximately teken into ac-
count in a so-called stream model of the flow of an ideal fluid. A zone
of constant pressure is assumed to exist in this flow. At the boundary
between this zone and the main flow, the velocity is constant, at the
value which corresponds to the static pressure in the zones. In the
plane of the hodograph, arcs of circles correspond to the boundaries of
the separated zones. The radius of an arc is equal to the velocity at
the boundary of the zone. Flow separation always occurs at the tralling
edge of a blade. The separated flow region theoretically extends an in~
finite distance downstream of the lattice. For the same inlet and exit
flow angles the velocity behind the lattice is greater with separation
than it would be with no separation. At the boundaries of the separated
flow reglon, discontinuous change in velocilty would theoretically occur.
In the sctual flow of a viscous fluid, infinitely large forces would
then be introduced which would prevent such a discontinulty from exist-
ing. In a real flow, therefore, the boundaries between the separated
region and the main flow break up into individual vortices which are
carried downstream by the flow. The presence of frictional forces also
causes low pressure regilons to exist in the seperated region immediately
behind the edges. Beyond this region the flow is rapidly equallzed;
thie phenomenon leads to an increase in the pressure, decrease In the
exit angle, and losses of kinetic energy similar to the losses in sudden
expansion. The parameters of the equalizing flow are obtained by the
similtaneous application of the equetions of continulty, momentum, and
energy (see sec. 7-7).

7-2. THEORETICAL METHODS OF INVESTIGATION OF PLANE
POTENTIAL FLOW OF INCOMPRESSIBLE
FLUID THROUGH A ILATTICE

There are two problems in the theory of lattices thet have the
greatest significance. One of these, termed the direct problem, con-
siste in determining the velocities of the potential flow field through
a given lattice for a given veloeclty at infinity ahead of the lattice,
and a given position of the rear stagnation point 02 on the profile.

0f greatest interest is the velocity at infinity behind the lattice.

The determination of these quantities may be considered as the fundamen-
tal object of the solution of the direct problem. The inverse problem
ig that of theoretically constructing the lattice when the flow about it
is either known or eagily determined for a gilven velocity trilangle. OFf

L98¢,
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practical importence is the problem of constructing such a& lattice with
a velocity distribution over the surface of a profile which is rational
and which assumes small kinetic-energy losses in the sctual flow.

It was remarked previously that for the flow of an incompressible
fluid the shape of the streamlines, the shape of the equipotential
lines, and the magnitude of the relative velocities do not depend on
the absolute magnitude of the flow velocity. Moreover, for the same
boundaries, the different potential flows of an incompressible fluid
may be summed. TFor example, any flow of an ideal incompressible fluid
through a lattice may be considered as the sum of two or several flows
through the same lattice. In figure 7-6 the flow through the lattice
is represented as the sum of two flows: a noncirculatory (irrotational)
(fig. 7-6(b)) and a circulatory axisl (fig. 7-6(c)). In the irrotetional
flow there is no circulation of veloecity sbout the profile, or, in other

words, the lattice does not change the direction of the flow; moreover, ~ 7~

this direction is chosen such that the point of convergence of the flow
is on the trailing edge. In a rotational-axial flow the direction of
the velocity at infinity is parasllel to the axis of the lattice; the
magnitude of the circulation or the ratio Acz/bcl = m 1is chosen such

that the velocity at the trailing edge is equal to zero. Any flow
through a lattice (with the point of flow convergence on the trailing
edge) may be obtained by summation of the irrotational and rotational-
axial flows. In particular, the velocities at infinity shead of and
behind the lattice will be equal to the vector sum. The velocities on
the surface of the profile itself will be equsl to the algebraic sum of
the corresponding velocities in the irrotational and rotational-axial
flows. If it is taken into account that the magnitudes of the relative
velocities do not depend on their absolute vaiues in each of these flows,
it is possible to £ind in 2 simple manner two important properties of
the flow of an incompressible fluid through & lattice.

First, there exists s linear relstlion between the cotangents of the
inlet and outlet flow angles of any given lattice. From the velocity
triangle (fig. 7-6(s)), notice that

cot By -~ cot By Ao

5ot By = oot By " Aoy~ m = constant (7-2)

where cot B} corresponds to the sngle B3 assumed in figure 7-6(a).

For a given lattice, the magnitude of the coefficient m can be com-
puted theoretically. For a lattice of flat plates in particular, the
coefficient m is related to the relative pitch t/b and the setting
angle PBp by the equation

%?-a 2 cos Bparc tan &~ 2 cot By + sin Bpln % (7-3)

i1-n
1+
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As may be seen from the graph of figure 7-7, the coefficient m
decreases with a decrease in plteh, so that the exlt angle PBp ap- -
proaches the setting angle Bp of the flat plates.

To any lattice of airfolls there corresponds a unique equlvalent
flat plate lattice which has & coefficlent m of the same magnitude,
and the same direction of the lrrotational flow. The equlvalent flat-
plate lattice for any inlet angle B; has the same exlt angle fo a8

the given lattice'of girfoils. In present-day turbine lattices the A
ratio b/t of an equivalent plate lattice 1s not less than 1.3; the g
engle By 1s between 15° and 40° end the angle By 1s between 90°
and 20°. The magnitude of the coefficient m 1s not greater than
0.015; the angle of the velocity behind the lattice therefore differs
from the angle By for the equivalent flat plates by no more than 1%,
Por present-day compressor lattices thils deviation may be as high as 3°.
Second, the magnitude of the relative velocity on the profile of
any lattice depends linearly on the cotangent of the exit angle. In "
factd A
s.C  %ou fu_Cpu, % %u . 24
- C'z 02 Cz Co Cz ACl Cz
¢
Utilizing the obvious correlations (fig. 7-6(a)), Cpy = EEE and
c -
- q —
Cc,, = —— we obtain
u Acl )
_ sin Bz _
C = Cpy E-E-B—O- + Cu(COt eo - cot Bl)sin 32 (7-4)
As wag gald, in present-day turbine lattices, By » By = constant, the
direction of the velocity behind the lattice differs little from the di-
rection of the irrotational flow for a wide range of inlet angles. Hence,
T = Ty + Gylcot By - cot By)sin By (7-4a)
2NACA note: This ratio is written as t/b 1in originel text.
3NACA note: cpy is the irrotational flow, Ffig. 7-6(b), and ey
i8 the circulatory flow, fig. 7-6(c).
co sin By Acy . (cot By - cot By)
Co ~ gin Bo Co cse ﬁz 2
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At any point of the profile where c, = O (fig. 7-6(c)) the rela-

tive velocity ©€© does not depend on the inlet angle. If the distri-
bution of the relative velocities T 1is known for two values of the
inlet angle B4, then the distribution ¢ can be computed for angle

By with the aid of equation (7-4a).

Of practical significance in the theory of the two-~dimensional mo-
tions of an incompressible fluid is the mathematical theory of the func-
tions of a complex variable. Without entering the mathematical side of
this problem, the discussion of which is given in any modern course of
hydrodynamics, we shall nevertheless make use of the important concept
of conformal transformation or mapping.

Conformal transformstion may be defined as the continuous geometri-
cal transformation (extension and compression or conversely) of a part
of the plane (region) in which at each point of the region the extension
or compression occurs uniformly in a&ll directions about this point. In
such a transformation the magnitudes of the angle between the tangents
to any two curves passing through each point of the reglon are preserved
as 1s also the shape of infinitely small figures, as is indicated by the
term conformal transformation. Exceptions mey be represented only by
individual (singular) pointe of the region. )

Every orthogonal square network in any conformal transformation may
go over into a second orthogonal square network. This property explains
the significance of conformal transformation in the investigation of the
flow of an ideal incompressible fluid. Any conformel mepping of a region
of flow transletes an orthogonal square network of curves & = constant
and ¥ = constant of this flow into a new orthogonal square network,
which may be taken as a network of a second flow in the conformally
transformed region with equal values of the velocity potential and stream
function at the corresponding points. The velocities of flow change in-
versely proportional to the extension at each point of the region.

In this way, the problem of determining the flow of an ideal fluid
reduces to the mathematical problem of conformally transforming the
given region into a simpler one in which the flow of an idesl fluid is
initially known or else can be easily computed. After finding the con-
formal transformation of the points of the required region, the velocity
is computed by differentiation (c = d3/dS). Several examples of the con-
formal transformation of lattices are shown in figure 7-8.

The above defined equivalent lattice of plates is obtained by means
of such a conformal transformation in which the flow region outside the
airfoil lattice is transformed into the flow region outside the plate
lattice. The infinity of the plane of the lattice of airfoils goes over
without extension or rotation into the infinity of the plane of the plate
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lattice. The pitch of the lattice is maintained, and the rear stagna-
tion point of the flow at the outlet edge of the alrfoil goes over into
the given edge of the plates. It should be remarked that the conformal
transformation is completely determined by the sbove condition. The
noncirculatory flow through the airfoil lattice (fig. 7-8(a)) corre-
gponds to the noncirculatory flow through the lattice of plates (fig.
7-8(b)). The gingular points, at which the conformelity of the trans-
formation does not hold, are the edges of the equivaelent plates. Con-
sldering the corresponding noncirculetory flows about-the equivalent
lattices of plates and airfoils, we note that the length of the equiva-
lent plates, for equsl pitch of the lattices, should bé greater than the
half perimeter of the profile. This property permits the parameters of
the equivalent plate lattice to be approximately evaluated.

A clear pilcture of. conformel transformation may be obtained in the
following manner: The flow region of the lattice 1s assumed $o be a
plane in which an ideaslly elastic film 1is atretched without friction
over the contours of the profiles and on which is drawn the network of
lines & = constant &and ¥ = constent of any flow through the lattice.
This film mey then be stretched over the contours of any lattice which
can be a conformal transformation of the given one. ‘In the transition
all the points of the film ere displaced in a definite menner, both
along the contours and in the flow region. The correspondence of points
in a conformal transformetion is thus achieved. The network of llnes
® = constant and ¥ = constant of the flow through one lattice goes
over into the network of the same lines of the equivalent flow of the
other lattice.

Of great significance is the conformal transformstion of a lattice
of airfoil profiles into a lattice of circles (fig. 7-8(c)}. In con-
trast to the equivalent network of plates, characterized by two param-
eters (t/b and Bo), the equivalent network of circles is determined
by only one parameter, the relative diameter (density of the lattice)
Zr/t = 2¥. As a result, lattices of profiles corresponding to different
equivalent lattices of plates can have one and the sume egulvalent lat-
tice of circles. The point 02 1in the cirecle lattice is not uniquely
determined by the relative diameter, however.

An example of the conformsl transformation of the region of flow in
one period of a profile lattice into a bounded region is shown in figure
7-8(d). Infinity ahead of the lattice corresponds to the center of the
circle (wl); the infinity behind the lattice coriresponds to a certain

point on the horizontal radius (wz); the flow lines in a periocd to a

segment between the points «; and <«5. As in the case of the equiva-

lent lattice of circles, the region of transformation is characterized
by only a single parameter, the ratic of the distance between the points

L98¢
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=) and *®, to the radius of the circle. For modern turbine lattices

this ratio is generally greater than 0.99. The points corresponding to
the uniformly srranged points of the profile contour are very irregularly
arranged over the circumference of the circle; the greater part of the
circle corresponds to practically only the leading edge of the profile,
while the remaining psrt of the profile contour becomes a small arc near
the point =,. In a conformal transformation of the type comsidered (in

which an infinite distence from the origin in one flow field is only =
finite distance from the origin in the other) the displacement of a pitch
ahead of or behind the lattice corresponds, respectively, to a passage
around the point <] or =2. The flow sbout the lattice is transformed

into a flow of a special form produced by a vortex source at the point
®q and a vortex sink at the point @5 . In the reglons of the conformal.

transformation considered, the lattices are relatively simply determined
by the potentlal flow of an incompressible fluid.

The problem of the flow about & lattice of plates was first solved
by S. A. Chaplygin (in 1912) and then by the more simple method of
N. BE. Joukowsky. Thelr work laid the foundation for the theoretical in-
vestigations of the flow about hydrodynamic lattices. Approximate meth-
ods of determining the flows about lattices of circles were worked out
by N. E. Kochin and E. L. Blokh. An exsct solutlion was given by G. S.
Samoilovich. B. L. Ginzburg constructed tables of values of the velocity
potential and the velocities on & circle as functions of the central
angle €@ for transverse, longitudinal, and purely circulatory flows
about lattices of circles with values of the spacing 2r = 0.20 -~ 0.90
(for circles in contact 2F = 1.0). By summing the flows considered,
any flow through a circle lattice can he obtained (fig. 7-9). The values
of the velocity potentials and the magnitudes of the velocities on a cir-
cle are obtained by summation from tebulated values multiplied by certain
constants, the magnitudes of which are found from the given direction of
the velocity at infinity ahead of the lattice and the condition of zero
velocity at the branch points of the flow given on the cirecle. By meking
use of the solution for the lattices of circles, the solution of the di-
rect problem, that is, the determlnation of the velocity on the surface
of the bplaede in the given lattice for given inlet angle, reduces to the
problem of obtaining an equivalent lattice of circles and then obtaining
a conformal correspondence of the polints of the blade contour in the lat-
tice with the points of the cirecle In the equivalent cilrcle lattice.
The analogous problem of the mapping of the outside reglon of & single
blede on a circle has been well studied and at the present time presents
no essential difficulties. For a lattice of blades the problem is more
complicated. An epproximete solution of this problem has been glven by
N. E. Kochin starting from the known conformal correspondence of a. single
profile and = circle. The method of Kochin, however, is sulitable in
practice only for latitices of small spacing. -
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The exact solutlon obtained by G. S. Samoilovich may broadly be de-
scrived as follows. TFirst, by one of the known methods, a conformal
trangformation is obtalned which maps the exterlor of a single clrcle
into the exterior of a single profile (fig. 7-10(a)}. Then, from the
condition of conformal correspondence of the exterior of the lattice of
profiles and the exterior of the lattice of circles, the spacing of the
equivalent lattice of circles 2% (fig. 7-10(b)) is obtained. The spac~
ing 27 depends on the pitech of the profile lattice and the angle at
which they are set, In the example considered, 2F = 0.85. When the
blades asre more closely spaced by decreasing the pitch or rotating them,
the spacing density of the equivalent lattice of circles increeses. The
flow is then related to the flow about a unit circle. For determining
the velocity distribution on a profile there is computed the displacement
function A8 equel to the difference in the central angles of points on
a unit circle and on a circle In the equivalent circle lattice corre-
sponding to the same point of the profile.- The displacement function
A8 determines the correspondence of points of the profile in the pro-
file and circle lattices. By making use of previously computed values
of the veloclty potentlal or the velocity on the clrele, the veloclty
distribution on a profile of the lattice is determined for any given in-

let angle B;.

In figure 7-11 a comparison 1s shown of. the experimental and theo-
retical distribution of the nondimensional pressure P over the profile
of a lattice for the example considered wilth By = 90°. The experimental

values P were obtalned by measuring the pressure in the middle section
of the experimental blades at small ailr velocities. The scatter of the
test points for different M, numbers 1s found to be within the limits

of accuracy of the measurements. There should be noted the characteris-
tie divergence between the experimental and theoretical values of T on
the back of the blade, produced by separation of the flow.

The velocity-at each point of the blade in & lattice differs from
the veloelty at the same polnt of an isolated blade (for equal magnitude
and direction of the velocity of the approaching flow and the same rear
stagnation point 02); first, because of the difference in the distribu-~

tion of the velocity potential on a circle in a lattice of circles and
an isolated circle; and second, because of the displacement of the cor-
responding point on a cirele in the circle lattice.

The use of the method of conformsl transformation permits determin-
ing the velocity distribution on a profile of a lattice for any inlet”
angle By whenever one flow about it ies known. Supposej for example,

there is known the distribution of the velocity potential & on a pro-
file of the lattice with pitch +t =1 for irrotationsl flow with inlet
angle Py = 90° and velocity at infinity c¢; = cp = 1 (fig. 7-12(a)).

[ NalaTal
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This is sufficient for obtaining the equivalent lattice of circles and
the correspondence of the points of the profile in the lattice with the
circle in the circle lattice. Using the tables of distribution of the
velocity potential on a circle for the corresponding flow about the lat~
tice of circles mekes 1t possible to construct the difference in poten-
tlal APy, &t the forward and rear stagnation points as a function of

the lattice spacing with t =1 and cy = ¢, = 1 (fig. 7-12(b)). The
value of A@iz in the circle lasttice coincides with the same potential

difference in the profile lattice for the single value of the spacing
2r/t characterizing the equivalent lattice of circles (fig. 7-12(c)).
The conformal correspondence of the points of the profile and the circle
is found by equating the known velocity potentials @ on the profile in
the lattice with those on a cirele in the equivalent circle lattice (fig.
7-13). For determining the velocity distribution on the profile for any
inlet angle By, 1t 1s necessary to determine, by employing tables of

flow about ecircle lettices, the distribution of the velocity potential
@ or velocity ¢ on & circle in the circle lattice. The proper inlet

flow angle By must be used, and the rear stagnation point of the cir-

cle must correspond to the trailing edge of the profile (fig. 7-12).
From the known correspondence of the pointa of the profile and circle

in the lattices it is possible to comstruct the velocity potential as a
function of the length of arc of the profile, the differentiation of
which will give the required velocity distribution over the profile of
the lattice (c = d$%/dS). With the described method of determining the
velocity, the number of operations of differentiation is equal to the
number of inlet angles for which the velocity distribution is determined.
Repeated differentiation may be avoided if use is made of the formula

i¢ &  d6 a9
¢ =35 =3 das = Ck g

The velocity cx on a circle of the lattice of circles is determined

for any inlet angle with the aild of tables, and the derivative de/dS
is obtained only once from the graph shown in figure 7~13.

If the distribution of the velocity ¢ on a profile of the lattice
is known, then to determine the conformsl correspondence it is necessary
Pirst to find the velocity potentisl

S

® fJP cdS
0
where it is assumed that 8 = O (or & = O) at the branch point.

Practically, for lattices with the spacings that are actuslly em-
ployed in turbines, the above problem is solved considerably simplified
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by the method of conformal maspping of the lattice, not on a lattice of
circles but on the interior of a circle (Pig. 7-8(d)). In thie case,
it may be approximetely sssumed that the sink ("2) is situeted on the

circle, and the veloclty at each point of the profile computed for any
inlet angle Py Dby the formula _

in which the angle in the circle & 1g determined graphically from the
equation

1 0 8
$= = eyt sin Bl('é' cot B - 1ln sin -2-)

The primes denote the magnitudee determined for a new 1nlet angle (Bl).
At the branching point the velocity potential &' = 0 and 6 = 251'.

The converse problem of the theory of hydrodynamic lattices, as
already stated, conslsts in the theoretical construction of lattices
satisfying definite conditions. In the construction of theoretical lat-
tices, there is generelly given the velccity potential of the flow, and
there is then obteined the shape of the profile that corresponds to 1t.
The methods of theoretical lattices (like the methods of theoretical
profiles in airfoil theory) permitted determining, in a sufficiently
simple manner, the effect of the individual geometrical parameters of
airfoil lattices of certain speclal shapes on their hydrodynamic char-
acteristics. A classical example is the previously mentioned dependence
between the inlet and outlet angles for a lattice of plates. Moreover,
the methods of theoretical lattices up to the present time make use of
certaln approximate devlices for solving the direct problem.

After sufficliently effective general methods of solution of the di-
rect problem have been worked out, artificial devices for constructing
theoretical lattices have to & considerable degree lost their practical
significance. Of some practical interest, however, are those methods of
constructing theoretical laettices thet assure obtaining hydrodynamically
& sultable velocity distribution on the profile and correspondingly
small losses of the actual viscous flow of a compressible fluid about

the constructed lattice.

The losses of kinetic energy in the flow of a real fluid (as com~-
pared with an ideal fluild) about a lattice mey be determined with the
ald of the boundary-~layer theory, if the theoretical distribution of
the velocity on the profile is known.

B N alnTal
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With account taken of what has been said, of all possible velocity
distributions, the most suiteble hydrodynsmically may be considered that
for which the losses in friction are a minimum eand the condition of con-
tinuous flow 1s satisfied over the entire profile. (See section 7-6.)

Any continuous veloeity distribution having a minimum number of
diffuser parts end a minimum veloeity on the concave side of the profile
may be considered as. practically sulteble.

One of the simplest methods of constructing theoretical lattices
that permits satisfying a number of conditions with regard to the veloc-
ity distribution is the method of the hodograph. This method was first
applied to problems of the flow gbout lattices by N. E. Joukowsky, who
in 1890 considered a case of the flow about a lattice of plates with the
stream uniting at their edges. The possibility of applying the hodo-
graph method for comstructing lattices with hydrodynamically suitable
veloecity distribution was pointed out by Weinig. A prectical epplica-
tion of the hodograph method was obtained by L. A. Simonov, who employed.
it for constructing theoretical profiles and lettices.

The construction of lattices by the method of the hodograph is
based on the fact that the region of flow through a lattice of'an idesl
incompressible fluid is conformelly transformed into another region in
its velocity hodograph (see fig. 7-3). As hass already been said, to the
flow about a lattice in the reglon of the hodograph there corresponds a
special flow of an ideal incompressible fluild produced by & vortex
source at the end of the vector c¢; and & vortex sink at the end of the

vector co (see fig. 7-3). Taking into account that to s displacement
by a pitch ahead of or behind the lattice there corresponds s passage

around the vortex source or sink, we can determine the flow rate of the
source or sink,
Ql = Cl't sin Bl 2 - QZ =t Czt sin Bz

the circulation of the vortex source,

Pl = ¢yt cos By
and the circulation of the vortex sink

To = - cot cos By

At the branching point Oy and the rear stagnation point 05, the veloc-

ity 1s equel to zero. Hence, the corresponding points of the flow in
the region of the hodograph coincide with the point ¢ = 0. For con~
structing the lattice, there are given the vectors cq = cy and the
contour of the hodograph enveloping these vectors.
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Let us consider in greater detail the procedure of construeting the
stream flow through a lattice (fig. 7-14). It should be remarked that
the direct problem of determining the flow through a glven lattice (with
no rear stagnation points in the stream) has no effective solution, and
the method of the hodograph is practically the only one which permits
constructing such flows.

The contour of the hodogreph of the flow through a lattice with
convergence point of the stream at the trailing edge (fig. 7-14(a))
passes through the point c¢ = O and through the end of the vector cgp.
The arc 898, corresponds to the boundaries of the flows between one

infinity and the other in the plene of the lattice. In the case consid-
ered of a turbine lattice for a given hodograph, the gbsence of diffuser
parts on the profile msy be assured (fig. 7-14(4)).

To construct the lattice, it is necessary to find the flow of an
ideal incompressible fluid in the plane of the hodograph, because of a
vortex source at the end of the vector e¢; with circulation

I = cqt cos By
end a sink at the end of the vector c¢2. The flow rate from the source
and sink is

Q = cqt sin By

The magnitudes of the velocity and the nondimensional magnitude 7T (see
fig. 7-14(b)) are connected by the equation of continuity (see sec. 7-7)

cqt 8in By = (1 - T)czt sin Bo, where <= ='%?

For constructing the profile, it is sufficient to find only the
distribution of the velocity potential & over the contour of the hodo-
graph by the method, for example, of conformal transformation of the
hodograph into the interior of a circle (fig. 7-14(b)) for which the
vortex source goes over into the center of the circle and the sink into
the point of the cirecle 6 = 0. The conformal transformation of a given
hodograph may be determined by some method of numerical mapping or with
the ald of an electrical analog. B

The velocity potential of the flow on a circle i1s, in the case con-
sidered, expressed by the simple formula

1(.6 e
éuj_t.(ré.-an sinz)

L98%
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At the branch point O of the flow, d®/d6 = 0 or cot 60/2 = T/q,
whence

6o = 2By

The coincidence of the branch point 0 in the hodograph plane with the
point e = O is equivelent to the conformal correspondence of the point
c = 0O and the point 6 = 83. With the contour of the hodograph arbi-

trarily given, the branch point in the hodograph plane will not, in gen-
eral, colncide with the polnt ¢ = O. The coincidence of these points
is assured, however, by a sultable specification of the shaepe of the
hodograsph. In the example of figure 7-14, this coincidence was obtained
by c?o§§ing the length of the segment P of the hodograph plane (fig.
7-14(a)). : :

After determining the velocity potential on the hodograsph contour,
the profile is constructed by graphical integration of the expression

as = ad/c

The accuracy of the computations and of the construction is checked by
comparing the given and obtained boundery conditions o. The neighhor-
ing profile of the lattice is at the pitch distance +t (fig. 7-14(c)).

The velocity distribution over the profiles of the constructed lat-—
tice for glven inlet angle corresponds to the given hodograph. The ve-~
locity distribution for any other inlet angle can be found simply. For
this 1t is necessery to make use of the known conformal transformation
of the region of the hodograph on the interior of a clrcle. Since the
hodograph is, in turn, a conformsl transformation of the flow region
gbout the constructed lattice, the conformal correspondence of its exte-~
rior and interior on the circle is known. The change in the velocity
potential &, accompanying a change in the direction or magnitude of the
velocity, is obtained in the circle as the change in the velocity poten-
tial of the flow due to a vortex source and sink with the changed
strengths : o

t cos Bi, Q! = cit sin Bi -—

Tt = c! 1

1

With the aid of evident substitutions and transformations we obtaiﬁ

2
a@' a8 ap'  ae I' - Q' cot 5
c!= = Cc = v o c
de 6
ds a% & I-Qcot g
8 .
cot Bi - cot %- cisin Bi sin(§ - Bi)ci
= . (%)

e C = 9 o4
cot By - cot 3 cysin By sin(é - B¥jc1

where the primes denote the changed quantities. .
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We emphasize that formuls (%), with change in inlet angle B3, de-
termines the magnitude of the velocity on the boundaries of the con-
gtructed flow with "solidified" streams passing off to infinity. Al-
though the exlt angle By evidently does not change and the velocities

st the boundaries of the stream zones are no longer relatively constant,
the previously mentioned change in the exit angle in lattices of vari-
sble spacing and the change of velocity near the trailing edge sre neg-
11gibly smell. With account taken of these remarks, formula (%) permits
computing with sufficient accuracy the velocilty distribution on the pro-
file of any lattice with change in the inlet angle if the velocity dis-
tribution for any one inlet angle 1s known. The exact solution of this
problem (by obtaining the equivalent lattice of circles) has been de-
scribed. The application of formula (%), in view of the evident advan-
tage of simplicity of the computations, 1s Jjustified in practically all
cases where it is possible to neglect the effect of the inlet angle By
on the exit angle pBo. For computing the velocity distributlon for sev-

eral inlet angles B; , formula (#) can be applied only once, and then

the linear dependence of the relative veloclty c/cz on cot Bl must a
be employed.

L98¢

7-3. ELECTRO-HYDRODYNAMIC ANALOGY .
The distributlon of the veloclty potential in a lattice of alrfoils
for any irrotational flow sbout it may be experimentally obtained by the
method of electro~hydrodynamic analogy (abbreviated EADA). This method
wag first applied to problems of the theory of hydrodynamic lattices by
L. A. Simonov. Until a genersl method of solution of the direct problem
has been worked out, the method of EHDA 1s practically the only one which
permits determining the flow about any arbitrary lattice with sufficient

accuracy. .

The EHDA method is based on the formal analogy between the differ-
entisl equations which are satisfied by the velocity potential for the
flow of an ideal incompressible fluid and by the electric potential for
the flow of an electric current through a homogeneous conductor or semi-
conductor. By meking use of this analogy, the theoretical computation
of the velocity potential 1s replaced by the direct measurement of an

electric potential.

The simplest and most widespreaed method of applying the EHDA is the
following: A flow of an electrical current, analogous to the flow of an
ideal incompressible fluid, is produced in a layer of water of constant
thickness (10 to 25mm). The water is poured into a flat vessel (gener- ‘
ally of rectangular shape) of nonconductive materisl. The electric cur-
rent passes between the electrodes 1 arranged at opposite edges of the
vessel (fig. 7-15). A small quantity of salt and carbonic acid which 1s "
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contained in the water assures sufficlent conductivity. For avoiding
the polarization of the electrodes in the electrolysis of the water, a
low-frequency, varieble current (generally using a circuit voliage of
110 or 220 volts alternating current) is connected to the electrodes.
The blades of the lattice are made of an insulator material, such as
peraffin or plastiline. BSeveral blades of the lattice are studied; for
all practical purposes, it is sufficient to study five blades. The
measurement of the electric potentisls in the bath is generslly made by
the compensation method. To the parallel current-conducting electrodes,
a voltage divider (potentiometer) is connected, the movable contact of
which is connected, through a zero current indicator (null indicator),
to a feeler or probe situated at the point of measurement of the poten-
tial. The probe is a thin straight needle moving along the water per-
pendicular to its surface. The simplest and sufficiently sccurate zero
indicators of an alternating current are radio esrphones or a speaker
comnected through a low-frequency amplifier. For the potentiometer,
there is shown In figure 7-15 a water rheostat consisting of a long ves-
sel filled with water. Under the conditions of exact design and horizon-
tal position of the vessel, the electrical potentials are distributed
proportionately to its length and cen be measured in fractions of the
applied voltage. To measure the potential, the moving contact is slid
along the potentiometer and the reading of its scale taken at the in-~
stant the force of the sound in the earphones attains a minimm. The
advantage of the described compensaetion method of measurement ig the
absence of the effect of the appasratus on the sbsolute value of the po-
tential at the point of messurement.

Instead of an electrolytic bath, it is possible to use electro-
conductive paper. The blade shapes are then cut from the paper. In
this case 2 direct-current source and highly sensitive galvanometers
can be used. .

The electro-hydrodynamic analogy may be conveniently applied to the
direct problem in theory of hydrodynemic lattices. It may be used to
establish the conformal transformation of a given lattice to the equiva-
lent lattice of circles. According to the above described method (fig.
7-12), it is sufficient for this purpose 1o know the distribution of the
velocity potential on a profile of the 'lattice for any convenient flow
about it, as for example, an irrotational flow with §q = B, = 90°,

¢y =cp =1, and t = 1. The magnitude of the measured electric poten-

tisls (fig. 7-15) must then be divided by the potential drop (messured
in the same units) over the distance of one pitch. This measurement

muet be made at a remote distance from the lattice and certainly not
nearer to it than 2t. -

In obtaining the conformel transformetion of a lettice of alrfoil
profiles into its equivalent lattice of circles with the aid of the EHDA,
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the direct measurement of the potential distribution of the flow is con-
ducted for the case of the flow with ro circulation about the blades.
With certain assumptions, the EHDA method can also be applied for di-
rectly measuring the velocity potentidl and even the veloclty 1ltself in
any flow of an ideal fluid, including flow with stegnation point at
trailing edge. 'The modeling scheme is irndicated in figure 7-16. The
exact form of the bounding walls (stresmlines intersecting branch
points) may in principle be obtained by the method of-successive approxi-
mations; practically, however, with this method there msy simultaneously
be given with sufficient accuracy the magnitude of the inlet angle and
the shape of the bounding streamlines. For meassuring the magnitude of
the velocilty at any point of the flow, & probe 1 is used with two peral-
lel needles placed in a holder at a small distence from each other. One
then measures the difference in potentlal between the needles in the di-
rection of the straight line passing through them. In measuring the
velocity on the profile, both needles are set on the boundary of the
model in the direction of flow. For measurements in the flow, the probe

is rotated. -

In concluding, we may remark that the EHDA method is employed also
for investigating the flow of an ideal gas wilth subsonie velocities.
For this purpose an electrolytic layer of variable thickness or & net- -
work model is applied. The electrical model in the plane of the veloc-
ity hodogrsph permits obtaining asccurate solutions without successlve

approximations.

7-4. FORCES ACTING ON AN ATRFOIL IN A LATTICE; THEOREM
OF JOUKOWSKY FOR LATTICES

For determining the forces acting on an airfoil, we isolate a por-
tion of the flow, as shown in figures 7-17(a) and (b). . The external
poundaries of the isoclated region asre defined by the segments ab and dec,
parallel to the axis of the lattice and of length equal to the piteh t.
The lines sb and dc, strictly speaking, should be at an infinite dis-
tance from the lattice because the flow parameters along these lines are
aggumed to be constant. The lnner boundary of the reglon is formed by

the contour of the profile.

Since the streasmlines ad and bc are equidistant throughout their
length, the resulbtant of the forces acting on the surfaces defined by
these lines are equal and opposite. The projections of the force with
which the flow acts on the profile are denoted by P, and Pg. The

1aQC

magnitude of these forces mey be determined from the momentum equation. .

Tn the direction normal to the sxis of the lattice, the change in the

momentum is equal to
m(eq) - caz) = t(pz - 1) - Pq
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where Py, 1is the component of the force P 1in the direction normal to.

the axis of the lattice; the mass rate of flow of the gas per second 1s
determined from the formula

m = plcalt = pzcazt
Then
2 2
= t[(pgcaz - chal) + Pgo - Pl] (7-5)

The projection of the force P on the axis of the lattice may be ex-
pressed by the equetion :

Py = tecay ey - oup) (7-6)
The forces F,, and P, refer to a profile having a unit span.

Equations (7-5) and (7-6) may be represented in another form by ex-
pressing the forces P,; and P, 1in terms of the circulation T and

the flow parameters at the inlet and outlet of the flow.
According to the equation of continuity,
P1Cgl = P2Ca2 = fCg
wvhere p 1is the mean demsity of the gas.

The veloclty eg 1is chosen such thet

Cgl + Ca2
o= g

It is eaglly shown that we then have

20, P :
172
b= o (7-7)
p1 T P
The circulation sbout the profile is equal to
r = teyy - cuz) (7-8)

gince the line integral along the equidistant lines ad and bc are equal
and opposite.
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( )After simple transformations, we obtain from equations (7-5) and
7-6

Pa = t[Pz b Pl = pca(cal = caz)] (7'9)
P, = glcg : (7-10)

We make use of the equation of energy

2 2
L, x N %,k
2 "k-1p 2

Since

2 2 2
cl = cal +-cul

c2 = 2 + ¢2
2 az uz2

2 2

7 = Calca1 - cap) *+cyley - eyp) (7-11)

where
Cyl t Cu2
Cu™ Tz

and we obtaln from the equation of energy

caleay - ca2) = 5= 1(p pl) cu(cul cyz)

Substituting this expression in equation (7-9) and taking into account
formula (7-8) we obtain

P
P = tEvz P - e o(psi' - ;i')] + ey (7-12)

Pu = plcg _ (7-13)
The force Pa glven by expression (7-12) is conveniently represented in
the form of a sum of two forces

Pa = Pal +-APa
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where
Pg1 = plcy

and
k 2 P1
APg =tlpz - PL - K -1 Plp, ~ oy (7-14)

The resultant of the forces Pgyy and P,; we will denote by P
and the over-all resultant force by P (see fig. 7-17).

It is evident that -~

-> -> ->
> > >
P =Py + Py

or
' - = >
P = Py + AP,
The force Py is determined by the formula

Py = fP§ + Py e

Substituting the velues P, and P,y we obtain

_ Py = o cla1 + cg —_
But ,
C.tzl + cg = cz

where c¢ 1is the mean vector velocity
- 31 + 32

cC = 5

y

Hence, the expression for P in the flow about & lattice has the
game form as the 1ift force of an isolated airfoil: v

Py = ple | N (7-15)
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The direction of the force P is perpendicular to the direction

b
of the mean vector veloclty ¢. This follows from the obvious equation
c P i
ten B = -2 = S
Cu al

Thus, the Joukowsky force scting on an asirfoil in a lattice is
equal to the product of the mean density of the gas and the velocity
circulation about the airfoll and the mean vector velodity. The direc-

tion of the force Py is determined by the rotation of the velocity

vector ¢ by 90° in the direction opposite to that of the circulation.

We recall that the mean density p corfesponds to the mean speci-
fic volume; that is,

Thus we have established that, in contrast to the isolated profile, the
resultant force acting on the profile in & lattice is equal to the sum
of ‘the Joukowsky force (Py) and the additional force (AP;) perpendicular

to the axis of the lattice:
-+ -+
P =B +2aF,

It is important to note that the characters of the forces Py and
AP, are different. Whereas the force Py depends on the eirculation
of the flow and becomes zero for P = 0, the force APy does not depend
directly on the circulation.?

The force acting on the profile weas determined for the general mo-
tion of & gas. With the aid of the obtained relatlons 1t is not 4iffi-
cult to investigate the magnitude of the aerodynamic force for ceriailn
special cases. Thus, for example, in passing from the lattice to the
isolated profile it 1s necessary to increase the pitch of the lattice to
an infinitely lerge value. At an infinite distance from the profile the
equations pg = p; and pp = p; must be valid; hence, AP, = O and
P, = 0. In the case of isentropic flow about the isplated profile, the
the resultant force acting on the profile is therefore equal to the

Joukowsky force

P=Py= ple

4NACA note: This result is at least partially dependent on the
selection of the mean velocity and mean density.

L98¢
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where p and c sare the density and velocity of the flow, respectively.
The direction of the force is perpendlculsr to the direction of the ve-
locity of the approeching flow.

Pagsing to the case of the flow of ‘an incompressible fluid sbout a
lattice, it must be observed first of all that in equation (7-14) the
second term on the right side is proportional to the change of the poten-
tial energy of the flow (with account taken of the hydraulic losses);
that is,

In this case of an incompressible fluid, PL = P = 0, and the energy
equation gives

2 2 '
€1 - G2 Ppy - Pl
2 - )

where Pot is the theoretical pressure in the absence of losses. Hence,

APy = -t(ppy - Pp)

The pressure difference Poy = Pp is equal to the pressure loss in the
lattice . :

Pay = Pp = APy
and

APy = -tAPp

Thus, in the case of the flow of an incompressible fluild sbout a lattice,
the additional force is negative and is determined by the losses of pres-
sure in the lattice (the pressure loss Ap,  should not be confused with
the pressure difference Py - Pyl [ —

In the sbsence of losses, Ap, = 0 and APy = O. In this case the
resultant force is equal to the Joukowsky force

P==Py= e
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This result for the lattice was obtained by N. E. Joukowsky in 1912.5

7-5. FUNDAMENTAT. CHARACTERISTICS OF LATTICES

For evaluating a lattice, energy charascteristics are generally in-
troduced. This procedure is different from that used for 1golated alr-
folls. The need of energy considerations is determined by the procedure
adopted for thermodynemic analyses. The energy characteristlics permit
evaluating the effectiveness of the process of energy transformation in
the stages of the turbomachlnes. The component forces acting on an sair-
foil in the lattice are expressed in terms of the dynamic pressure of
the flow at the inlet to the lattice or behind it. In the latter case
the formulas for determining the peripheral and radlal forces are as-~
sumed in the form

2Py

C} m —— (7-16)
u 2
kpzMéb
[Note: C! 1s a coefficilent.]
and op
cl = -—a— (7-17}
P, M2
2 2

where po and My are the static pressure and nondimensional velocity
behind the lattice.
Analogously, the other aerodynamic coefficients Cx and Cy may

be determined. These are employed mainly in the computation of com-
pressor lattices.

In choosing the fundamental geometrical parameter of the lattice,
the pitch, it is convenient to employ the concept of peripheral force
determined as the ratio

Cu =

Y

g'I'he possibility of generalizing the Joukowsky theorem to the case
of the flow of & compressible fluid through a lattice was first pointed
out by B. S. Stechnkin in 1944. The exact solution was obtained by L. I.
Sedov in 1948. The basis of the approximate theorem of Joukowsky for
lattices in the flow of a compressible fluid was proposed by L. G. -
Loitsyanskii in 1949. The generslized theorem of Joukowsky presented in
thie section for a lattice in an adiabatic flow was given by A. N.

Sherstyuk.

1988
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where Pﬁ is the peripheral force on unit length of the profile corre-

sponding to the "ideal" rectangulaer distribution of the tangential pres-
sure (fig. 7-18). Evidently, for sn incompressible fluid (with low in-
let velocity) .

= - = L2
Py = (pp - pp)B =5 B

The magnitude P, 1s determined by formula (7-8); then

£ Zealey - cya)
Cu =3 2
2

Noting that

Cg
co = -é_in_BE and (cul - Cuz) = ca_(CO'b’ B]_ + cot Bz)

we obtain finally
o 2 sin Ezsin(ﬁl + ﬁz) % (7-18)
u gin By B

The most important of the energy characteristics of the lattice is
the efficiency defined as the ratio of the actual kinetic energy behind
the lattice to the kinetic energy that should have been available if
there were no losses,

Np = Hoa/Ho1
or, after simple transformations
k-1
2 1 Po1
M, = 1 - ( ) -1 (7-19)
P k-1y2 D
MZt 02

where DPgys Pop 8are the stagnation pressures ahead of and behind the
lattice and Mpy is the Mach number behind the lattice in the case of
isentropic flow.

Formule (7-19) is suitable for determining the efficiency of a com-
pressor lattice.

. The coefficient of losses of kinetic energy is defined by the obvi-
ous expression

tp =1 - 1p (7-20)
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The real flow at the inlet and outlet of the lattice i1s nonuniform;
the velocitles, angles of outflow, and statlc pressures vary along the
pitch. The equations of continuity, momentum, and energy must then be
written in integral form. Thus, the equation of continuity for the sec-
tions shead of and behind the lattice can be written in the form

-t t

u/" pyjcisin Bydt tjf‘ pocosin Bodt
o] 0

Introducing a reduced flow rate q, we obfain after elementary

transformationss

\ t

Pa @ Pooq.
01-1 sin pydt = 0z2-2

To1 Toz
0

sin Bodt
0

For Tpy = Tge = Tg = constant, averaging of the-equation of con-
tinuity gives

I.—l

t
(pna 8in B) = = p~q s8in B dt
0 cp & 0 0

The peripheral force is in this case determined from the equation
t t

Pusi]‘ plcg gin Bycos Bpdt :}N pzcg gin Bocos Bodt
0 o}

or, again introducing the reduced flow rate .q, we obtain’

t t

SNACA note:

1(‘L_P_T_o_ c
4= VeRPp t TgRT

7NA.CA note: A = éL where a, 1s the speed of sound when c¢ 1s

sonic. See eq. (7-25).

Nala el
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Averaging of the expressions under the integral sign gives

Y
! 1
(pOQX sin ZB)CP =-%L/F pydh sin 2pdt
0

From the equation of energy, the temperature of the flow behind the
lattice is averaged, &nd the following expression 1s involved:

e . . _
N R ¥ 2 ‘ -
(qux sin B)cp = T b[; Poal“sin Bdt .

For determining the nondimensional characteristics of the lattice,
it is necessary to formulaste the concept of an ideal (theoretical) proc-
ess in the lattice for a nonuniform flow. An ideal process may be con~
sidered an isentropic procesg for which in the section investigated there
remain unchanged, as in a real process, the field of static pressures and
the directions of the velocities. According to another definition of an
ideal process, the angles at the inlet and outlet of the lattice are
equal to the mean of the angles By and Bg determined by the momentum
equation.

The average values, by the equation of momentum, of the projéé%ionS'
of the wvelocity behind the lattice are equal to .

k
(cqcos Bz)cp = Tg s*‘l; Poodphpcos Bosin Badt

5
k )
(egsin Bz)cp = ‘@5 s*J; pozqz}\zs:.nszdt
where G is the flow rate of the gas througb one channel of the lattlce.
The mean angle is then
-t

pozquzsinzﬁzdt
Bp = arc tan (7-21)

cp
J; Dooa),sin 28,4t

s~

ct
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Besides the efficiency in the computations.of a stage, there ls
employved a coefficient of discharge equal to the ratio of the actual dis-

charge to the discharge in the idesl process8

t

Jg pozqzsin Bzdt

= ( . ) [ (7"22)
Po1 qpsin BE cp

and a coefficient of momentum (often termed coefficlent of velocity)

t
f p02q27\28 in ZBzdt :
0
q) = T (7—23)
P i
Por (dpPpsin Byl
which is the ratio of the momentums of the flow in the resl and ideal
processes. — .

The efficiency of the lattice in a nonuniforn flow is computed by
the formula

‘/“ Pozaphzsin Badt
° (7-24)

2 . Li]
p01(quzsxn BZ)Cp

Mp =

For an approximaste determination of np’ equation (7-19) may be
used, substituting in it the mean dynamic pressure behind the lattice.
In the denominator of equations (7-21) to (7-24), the functions qp4
and th may be approximately determined from the pressure ratio
pZm/pOl’ where the mean static pressure behind the lattice is

1 pt
p2m—€f9d°
0

8The index t denotes that the parameters refer to an ideal proc-

esg in the lattice. [NACA note: The prime in egs. (7-22) and (7-23)
end the double prime in eq. (7-24) are not defined in the text. They

denote i1deal conditions for which the author claims he uses the index t.
Later in the text he does use t in gquy and Apy. -to denote ideal
conditions. ]

I e
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In working up the results of tests of lattices, the local coeffi-
cients n3, ©;, and 13 are used which are defined for each streamline
by the formulas .

el
|n?’m

o5 9 =— and 4 =

My N

N

7-6. FRICTION LOSSES IN PLANE LATTICE AT SUBSONIC VELOCITIES

In the flow sbout a lattice the losses of kinetic energy produce&
by friction in the boundary layer and the formation of eddies in the ’
wake behind the trailing edges are termed profile losses. - -

The part of the profile losses due to the friction may be evaluated
if the velocity (or pressure) distribution over the contour of the pro-
file is known. The determination of the structure of the boundary layer
formed on the profile, the esteblishing of the points of transition and
separation of the layer is an importent part of the probvlem of profile
losses in lsttices. The theoretical and experlimental investigations of
the boundary layer in lattices permit determining to a first epproxima-
tion the losses in frietion for the continuous flow about & profile and
finding the thickness distribution of the boundery layer on the profile.

The scheme of formation of the boundary layer on a profile in a
plane lattice is shown in figure 7-19(a). Msking use of the graph of
the velocity distribution of the external flow, we follow the character
of the change of the layer on the concave and convex surfaces of the
blade. On the concave surface behind the branch polint the thickness of
the layer at first slightly increases. At the points of increasing cur-
vatures where the velocity of the external flow either does not change
or drops (the diffuser region on the concave surface) the thickness of
the boundery layer increases. At these points of the profile there
occurs the transition of the laminar into the turbulent layer or even a
separation of the layer. '

On the converging part of the concave surface where the pressure
drops sharply, the thickness of the boundsry layer decreases and atteins
minimum values at the point of departure from the profile. On the con-
vex surface, in the direction toward the narrow section, the thickness
of the layer likewise decreases, and at the points of maximun curvature
of the profile it is & minimum. :

Along the convex surface in the obligue section, there is noted a
sharp increase in the thickness of the layer reaching a meximum value
at the trailing edge. On this part of the profile (diffuser part of the
convex surface) the flow as a rule has a positive pressure gradient
which may lead to separstion (fig. 7-19(b)).
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The boundary layer on the profile may be computed if the velocity
distribution of the external flow is given and the condition of the .
boundary layer (whether it is laminar or tu;bulent) is known. The ex-
isting methods of computing the boundary layer do not take into account
the effect of the turbulence of the external flow and of strong curva-
ture of the profile. In designing a lattice, the factor of practically
most importance is the determining of the position of the point of tran-
sition from the laminar into the turbulent flow and the conditions of
continuous flow about the profile. As computations and tests have shown,
the transition point most often colncides with the point of minimum pres-
sure on the profile or is somewhat shifted in the diffuser reglon. In
those cases where the flow is strongly turbulent or when local reglons
are formed in which dp/dx > 0, in the converging part of the channel,
the transition point may be displaced against the flow.

98¢

The computation of the turbulent parts of the boundary layer is
conducted as a function of the character of the velocity potential dis-
tribution. In the converging parts or the parts of constant pressure,
(dp/dx € 0) in the case of small velocities (incompressivle flow), the
momentum thickness &** i3 computed on the agsumption that the veloecity L
distribution in the boundary layer is glven by an exponential law.

In the work of N. M. Markov, there is shown the satisfactory agree-
ment of the experimental data with the computed results. On figure 7-20
is given the velocity distribution in the boundary layer on the convex
surface of the blade of & turbine lattlce nea¥ the exit edge. o

The cheracter of the change of the momentum thickness &% along
the blade of a turbine lattice may be seen in figure 7-21(a) and (b),
where the experimental values of 8™ are alsé indicated. For comput-
ing the layer, the experimentel curves of the velocity distribution 10

of the external flow were used. As may be seen from the curves in fig-
ure 7-21, the results of the computation satisfactorily agree with the
test data.

On the basis of the computational results of the boundary layer on
the concave and convex surfaces of the blede, the friction loss coef-
ficient in the lattice is computed.
The fundamental characteristics of the lattice mag be expressed in
terms of the known paremeters of the boundary layer, 85 and 85", which
are determined et the exlt edge of the blade. Denoting as before (see
fig. 7-19(a)) by uy and pp the velocity and deusity at_a point in
the boundary layer at the exit edge, and by uyg ‘the velocity at the
external boundary of the boundary layer in the same section (the veloc- .
ity of the potential flow), we set up the equation for the coefficilent

CT of the friction losses.
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The~kinetic-energy loss in the boundary layer may be expressed by

the equation
s}

n
1 2 2
Abp = gf ezug(uzo - up)dy
0

We transform this equation into the form

B uz N N } -
Ay = & 1 - =2 )2 udhe, 2 ay
u b Te) FO
20
0
It is not difficult to obtain
X
k-1
k-1.2
P2 Po (l-k+1)‘20) (7259
—= pg = -
f0 gRT, _k -1 .2 :
O l1-fg3T %
since9
-
k-1
k-1.2
po Tp P (l_k+l)‘20
on T, DA k - 1.2
0 2 0 1 - ]
where
up 20
Ao = — and don = —
2% &, 20 = &
We set
Sn
k-1,2 2
1 - X u u
e k+1 20 2 2
8o = a— 1-—|gzdy (7-26)
1 — =2 u 20
o k+1 "2 20

9NACA note: This presumes that the static pressure in the bound-

ary layer is that of the mainstream and that the recovery factor within

the boundary layer i1s unity.
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Then referring to equation (7-25), the energy loss may be written in the
form ' '

Summing the losses on the convex and concave surface of the blade, we
obtailn

P
AhT,np=':2L'g—R‘%5E52 uzo) + (83 uzo) ] (7-27)

The magnitude 5™ 1as a concrete physical meaning; by analogy with

the momentum-loss thlckness 6**, 5] is equal to the thickness of the

fluid layer moving with the velocity ugy outside the boundary layer,

the kinetic energy of which is equal to the kinetic energy of the bound-
ary layer.

The coefficient of losses in friction is

I\
by = —h%;c’—@ ' (7-28)

where E; = GCZO/Zg is the kinetic energy of the flow behind the lat-

tice for the isentropic process and G 1is the actual flow rate of the
gas through one channel of the 1att1ce, which can be determined by the

equation

(o By
G=0Cy -8 f (p2ouzo - Pau) 4y + j; (pz0uz0 = P2uzlyy, &Y
0

where ppg 1s the density at the outer boundary of the layer in the
section at the exit edge and Gy is the flow rate of the gas through
one channel of the lattice in isentropie flow.

The above expression may be given in the form

P
3¢, * 0
G =0y - [(8 uzo)cn + (8 uzo)boa'ﬁa (7-29)

L98¢
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In equation (7-29)

1 - k -1 2 a
* ¥k -1,2 k + 1 20 2
5 _(l Tk +1)\20) 1 -l k - 1,2 ) U dy (7—30)
"k 1 Az

The theoretical flow rate of the gas may be determined by the
formula 1

2 k-1 PO

(7-31)

Substituting expression (7-31) in equation (7-29), we obtain

1
Do

k-1
2 . . 3%
G = [( - 1 )\'2"0) )\z.t&*t sin BZ - (5 UZO)cn - (5 uzo)boJ R—TO
(7-32)

By using equation (7-27), the equation for the loss coefficient (7-28)
now assumes the form

3 3
(837220, + (83 Az0),
cn ol
QT =
1
k-1
kK -1 .2 . 2
1-5357 Mt Aggt sin By - (8hg0) - (8%p0)y oy M2t

(7-33)

Bearing in mind that
=+

= u.Gy = 1-——-—]“12k_1p Apge,t sin B
HpGt = Hp EET RT, M2t 2
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formula (7-33) can be represented in the form

(ag**xgo)c + (5O 20), .,
bp = T

k-1
k - 1 .
Hp(l - EFT *%t) Bt sin By

or
e 63 3 Rt e, D -
(H7702 Az0)  + (B 83 A5q)
cn bol
by = T (7-34)
k-1 — - )
k-1.2 3
“p(l v T *2%) Mgt sin By
where
H n
g
(5)

From a comparison of formulas (7-33) and (7- 34), it follows that
the flow~-rate coefficient My is equal to _— .

JO.
(H"ss 2 Meod  + (B8 Nz0), .
= 1 - 3 (7-35)

k-1
k

where

B =

For an incompressible fluid, there may'be obtaineé from expressions
(7-34) and (7-35)
W3t 3 R
(7-36)

CT =
LLPCZtt sin Bz

[Nelelad
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and
ek + (EXoE™
( 2 uZO)cn ( 2 uzo)boz

=1 - (7-37)
Hp c .t 8In B, ‘

In this case (for the incompressible fluid), the values of 85*
and 82 are determined by the formula given in table 4-1.

The magnitudes B** and H¥ entering equations (7-35) and (7-38)

should be determined for the turbulent and laminar boundary layers
individually.

Tt is evident thet the values H™* and HY and the magnitudes

8% ana &% depend on the velocity distribution in the boundary layer,
that is, on the flow regime within the layer and on the character of the
change in velocities of the external potentlal flow (the pressure
gradient dp/dx).

*

N. M., Markov computed the values g and H* for the turbulent

layer using the assumption of an exponential velocity distribution law
end for the leminar layer with dp/dx = O. On figure 7-22(a) and (b)
are given the values of B anda ®® for the turbulent layer as a

function of Re*™ and XZO and for the laminasr leyer as a function of
Aog.

As an example, we shall determine the theoretical mignitude of the
profile losses in turbine lattices as a function of the inlet and exit
angles By and Bp. We assume that the velocity distribution on the

profile is approximetely that shown by the dotted curves in figure 7-23
for all inlet and exit angles. On the convex side of the profile
coep/Co = 1.1 and on the concave side cypo3/cs = 0.5 epproximately,

[subscripts cn and bol dJdenote convex and concave sides, respectively].

On this asgsumption, the density of the lattice B/t for each p&ir of

values of the angles should have a fully determined value (see sec. 7-5):

From equation (7-18)

2 sin Bpsin(py + B3)
Cusin Bl

5.
%

where the coefficient of the peripheral force is

u — —
Cy = 5 = = Pen + Ppoy
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fén and ibol being the mean pressure coefficients on the convex and

concave surfaces of the blade.

For the assumed wvalues of Con and Chol

2 : co 2
Ccn = Cbhol
§En =1 - EE—> = - 0.2l and Ppoy = 1 - ( oo ) = 0.75

that is, G, = 0.96.

Assuming further that
Y20 T 2t

T
Hﬁ;* = Bpoy = 2 and py =1

we can represent the friction-loss coefficlent of the lattice in the

form
%
8cn + sﬁgl

-z o bol (7-38)

b = t sin Bo

On the assumption of the exponential law of velocity distribution in the
boundary layer (with exponent n = 1/7), the momentum thickness is equal
to [Note: +this expression is very similar to that of E. Truckenbrodt;

cf. Schlicting, p. 470.]

*it 0.37 c *
8% = 0.0973 0.2 o dx (7-39)

0

In expression (7-39), we assume Re = lOs, and to estimate the arc
of the profile S on the convex and the concave surfaces we evaluate

approximetely (fig. 7-23(a)):

1 B 2 B
Sen = Svol = Z 5In p; ¥ 3 5in By (7-40)

The graphs in figure 7-23(b), where the friction loss coefficientlO

CT is represented as a function of Bl and ﬁz, are constructed with

10For the case of infinitely thin treiling edges the coefficlent {p

is equal to the profile loss coefficient of the lattice.

I Am
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the ald of formulas (7-38) to (7-40). The dotted curves correspond to
constant values of B/t. Notwlthstanding the considerable reservations
with which the entire computetion was made, the results are qualita-
tively well confirmed by experiment.

+ The friction losses depend on By and Bo, increasing with de-
crease in these with the greatest influence exerted by p;. TFor
Bl s Bz (in lattices of the impulse type) the curves of equal gT al-

most pass through the normel to the straight line B = Bo; that is, in

this case the losses depend essentially on the magnitude of the angle
of rotation of the flow equal to

AR = 180° - (By + Bp)

We msy remark that the effect of Reynolds number on the friction
loss coefficient in the lattice can easlly be determined by computation.

7-7. EDGE LOSSES IN PLANE LATTICE AT SUBSONIC VELOCITIES

The eddy losses &t the trailing edge constitute the second compon-
ent of the profile losses in a plane lattice. The flow leaving the
trailing edges always separates. As a result of the separation there
is an interaction between the boundary layers flowing off from the con-
cave and convex surfaces behind the trailing edge; vortices thus arise

which appear at the initial part of the wake. The photographs of the

.flow behind the lattice presented in figure 7-24 show the formation of

the initial part of the wake.

A large influence on the wake i1s exerted by the distribution of the
velocity in the boundary layer at the point where the flows from the
convex -and the concave surfaces unite and also by the difference in
pressure at these points. Along the initial part of the wake, (includ-
ing the reglon behind the tralling edge where a Kérmdn vortex street 1is
formed with the usual chess arraengement of the vortices) the interaction
between the eddy wake and the nucleus of the flow unifies many properties
of the flow field behind the lattice. The static pressure of the flow
increasses and the outlet angle decreases. As a result, kinetlc-energy
losses arise, analogous to the losses in sudden expension.

The parameters of the equalizing flow can be obtained by the simul-~
taneous solution of the equations of continuity, momentum, and energy.
The control surfaces shown in figure 7-25 are selected. These surfaces
are equally spaced, when measured along the lattice axis; and they en-
close the fluid involved in the study. The gbove equations can be writ-
ten for the following assumptions: (a) the density of the flow changes
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1little as it moves downstream (from secs. 2-2 to 2'-2!'); (b) the field
of velocities and pressures are homogeneous between the wakes and com-
pletely &across the section 2'-27,

The equation of continuilty can then be represented in the form

pco(t - At)sin Bo, = cg,pt sin Bog,

or -
co(l - T)sin Boy = co.8in By, (7-41)
where
At
TEE

The momentum equation in the direction of the axls of the lattlice gives
z (t - At)si z t si
cocos BonP - gin Bo, = Cp5,CO8 Bonpt sin Bow

or, with account taken of (7-41), we obtain

- €pC08 Boy = C5uCOS Bog _ (7-42)

The momentum equation in the direction perpendicular to the lattice axis
can be written in the form L . .

cdp sin®By (t - AL) + pp(t - At) + Pt = c§p qinzszm; + Dot
(7-43)
From equations (7-41) and (7-42) there is easily obtained
Bp, = arc tan[(l - T)tan Byy] (7-44)

Equation (7-43) permits finding the increase in pressure behind the
lattice

2 2
Dppe = ——z[c%p sinZBZH(l -T) - c%wp sin“Boy, + (Pkp - pz)'a

PCy

L98¢
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Taking into account expression (7-41), we obtain

— PZw = Pz -
Bpgw = 15— = [2(2 - ©)sin®Ban + Bplv (7-45)
z P2

For determining the theoretical velocity at infinity behind the
lattice, we make use of the equation of energy which for the assumption
made pg = Po, = P mAY be represented in the form

2 2
(cécn) Pom Ca P2 .
5 + 5 = 3 + —'—p (7'46)

where cé, is the theoretical velocity in the section 2'-2°'.

From expression (7-46), we obtain

C' 2
Zoa —_
(EE—) =1 - Py (7-462)

The velocity cp 18 expressed in terms of cp, with the aid of equa-

. tions (7-41) end (7-44), thus

2

c
20 2 2 2 2

;—2-—:.- (l —T) gin an + cos an =1 -T(Z -T)Bin BZn
2

and we have

Cog 1-+(2 - t)sin?B .
2' = 2n == QEP (7—47)
('.!2w ]l - Aﬁzm -

The coefficient of edge losses 1sll :

2 —
b =1 -02 = T sin Pan - Pip T (7-48)
kp kp 1 - MPow

Hpormilas (7-45) to (7-48) given here were obtained by G. Y.
Stepanovich.
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The nondimensional pressure behind the edges entering equations (7-45)
and (7-48) is =

- Pxp - P2
pkp="l£&'_

1 2
7 e3

and it must be determined from experimentsl data.

With an accuracy up to magnitudes of the second order as compared %
with < +the coefficient of edge losses is expressed by the formula <
Ckp = - PypT _
For small velocities, according to test data (see below)
ﬁkp = - 0,1
From the asbove arguments, it 1s seen that the edge losses are directly
proportional to <. §
According to test data, the equalization of the flow behind the ‘

lattice occurs very rapidly at first, and the rate of equalization is a
function of the geometrical parameters of the profile and the lattice,
and 18 quite dependent on the thickness of the edge. The region of in-~
tensive mixing ends at a distance y = (1.3 to 1.7 t) behind the trailing
edge. This is confirmed by the graphs in figure 7-26 in which are given
the results of an investigation of the wake behind a reaction lattice
according to the data of R. M. Yablonik. Figure 7-26(a) shows curves of
local loss coefficlents of the wake at different distances behind the
reaction lattice. On figure 7-26(b) is shown the variation of the coef-
ficient of nonuniformity in the flow field behind the lattice. This
coefficlent is defined by the formuls

Cg,max ~ Ca,min -

vV =

2Ca,m " - _
where " _
s, max and e ,min maximum and minimum values of componént veloclty
Cg Iin the given section
Ca,m mean velue of velocity cg in the same section

A detailed investigation of the flow behind the trailihg edge of a
reaction lattice was conducted by B. M. Yakub. The results of these
tests reveal certain effects of the shape of the edges on the flow
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gtructure in the eddy wake. Measurements of static pressure on both
sides of the waske show that there is a considergble nonuniformity in the
pressure field along the boundsries of the wake (fig. 7-27). Moreover,
the static pressure along the wake boundaries changes periodically.

As the flow leaves the concave surface of a blade, its pressure
must drop, while on the concave surface it must increase. Further, be-
hind the prineipal edge vortex, the static pressure decreases on both
sldes of the weke, 1t then egasin increases somewhat, and so on. Finally,
there is a complete equalization of the field of flow. From figure 7-27
it is seen also that the amplitude of the fluctuations of the static
pressure depends on the shape of the edge. By meking a two-~slided taper
(sharpening of the edges b and c¢ in figure 7-27) it was possible to
decrease somewhat the nonuniformity of the static-pressure field.

The tests showed that a sharpened edge of the type b reises the
efficiency of the lattice, as compared with the normal edges, by 1 per-
cent and that an edge of type ¢ increased the efficiency by 2.5 per-
cent (for a medium velocity of flow). It should be remarked that, not-
withstanding their high effectiveness, the forming of very sharp edges
of the type c¢ 1introduces sericus difficulties- -because such an edge
rapidly deterlorates under actusl operating conditions.

7-8. SEVERAL RESULTS OF EXPERIMENTAL INVESTIGATIONS OF PLANE

LATTICES AT SMATY SUBSONIC VELOCITIES

Systematic investigations of the effect of the geometric parameters -
of the lattices on the magnitude of the profile losses st small veloc-
ities were conducted in the M. I. Kalinin Teboratory, the I. I. Polzunov
Institute, the F. E. Dzerzhinskli Institute, and in other scientific re-~
search organizaetions and institutes.

We shell consider as an example several results of an experimental
investigation of the effect of the pltch, the blade angle, and the angle
of incidence of the flow on the velocity distribution over the profile
of an impulse and reaction type lattice.

Figure 7-28 shows the velocity distribution over the profile12 of
a reaction turbine according to the data of N. A. Sknar. With increase
in pitch, the flow about the back of the profile becomes impaired. Along
a considerable part of the convex surface, the pressure gradient is posi-
tive (see curve for T = 0.904 on fig. 7-28). In this diffusing region
s boundary layer is formed, and its thickness increases and in certsin

127he locel velocities are made dimensionless by dividing them by
the vector mean velocity.
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cases separates. With increasing pltch the ﬁbnuniformity of the flow
in the passages between the blades increases; the velocltles on the con-
vex gide increase, while on the concave side they decrease. At high
values of the pitch, the flow about & profile in the lattice approximates
the flow sbout a single profile (fig. 7-28).

The effect of the blade setting on the velocity distribution over
the profile is shown in filgure 7-29(&). The maximum favorable velocity

distribution for a given proflle is obtained at a setting angle By = 50°,

In this case both along the upper and lower surface the velocities in-
crease more uniformly.

A chenge in the inlet angle of the flow (fig. 7-29(b)) greatly
affects the velocity distribution along the profile. ILarge inlet angles
tend to impair the flow along the concave surface, while small angles
gimilarly affect the flow slong the convex surface.

The investigation of an impulse lattice conducted by E. A. Gukasova
shows that, similar to the reaction lattice, & change in pitch. causes &
considerable change in the velocity distribution along the profile (f1g.
7-30}. TPFor all values of the piltch an adverse pressure gradient is
found immediately behind the leading edge. The diffusing reglon extends
over the greater part of the concave surface, and only near the outlet
part does the flow reaccelerate. On the convex surface of the blade be-
hind the leading edge, the flow accelerates and reaches & maximum veloc-
ity downstream of the part of greatest curvature. We note that, as for
the impulse lattice, diffuser reglons are formed near the trailing edge
of the upper surface for all regimes.

With decreasing pitch, the nonuniformity of the velocity field in
the channel between the blades decreases. A similar trend accompanies
an increase in the inlet angle of the flow; as B increases, the flow

on the concave surface accelerstes while the flow on the convex surface
slows down. A decrease in the inlet angle 1s accompanied by the appear-
ance of adverse pressure gradients near the inlet of both the convex and
concave surfaces. TFor inlet angles somewhat higher than the profile
angle Bln’ the most favorable general velocity distribution is found.

The change of the coefficient of profile losses in impulse and re-
action lattices ss a function of the pltch and inlet angle may be seen
in figure 7-31. The curves show that for each lattice there exists a
definite optimm pitech for the minimum profile losses. Thus, for exam-
ple, for the reaction lattice having the profile shown in figure 7-28,
the optimum pitch is %Ept = 0.673. TFor the impulse lattice,

Topt = 0.50-0.60.

/1 QRC
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In spite of the favorable velocity distribution, in a closely
spaced lattice (% <|{bpt) the loss coefficient is relatively high be-
cauge of the greater losses produced by friction. Decreasing the pitch
also causes an increase in the coefficient of edge losses.

The curves in figure 7-31 show that for all pitches a decrease in
the inlet angle (below the optimum) has a sharper effect on the effici-
ency than en increase in the angle. An incresse 1n gp also noted for

By > By, for the impulse lattice of large pitch. It should be empha-

sized that as a2 rule the values of the optimum inlet angles exceed the
geometric angle of the profile.

From the results of the investigations, it cen be concluded that
the experimental determinatiorn of the optimum pitech must be carried out
over a wide range of inlet angles. .

The tests show that the direction of the equalized flow behind the
lattice may with sufficient accuracy be determined by formula (7-44).
The familiar formula gilven in the literature for determining the effec-
tive (actual) angle of the flow . )

8o . .
Bpe = arc sin & (7-49)

gives somewhat lowered values of P,. More closely agreeing values of
Bze with test results are obtalined by formula

&2

TAT (7~50)

Boe = arc sin

At small velocities tests conflrm that for all practical purposes,
the outlet flow angles of a reection lattice depend only slightly on the
direction of the flow at inlet, that is, on the angle By (fig. 7-32).

The angle B, is, however, influenced to a large extent by the plteh

and the setting angle of the profile. With an increase in By and ?,-

the angle B2 increases.to

Similer results are obtained also for the impulse lattice. TIn
this case, however, the deviation between experimentsl and computed val-
ues of the outlet angles increases. According to the data of a number
of tests the outlet flow angle incredses somewhat, as the inlet flow
angle increases. '

igAnalysis of formula (7-44) leads to the same results.
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Immediately'behind the lattice, the field of the flow angles is
nonuniform; the angles Bo vary slong the pitch (fig. 7-33). The
greatest changes in B, are found near the boundaries of the trailing

eddy wake. With increasing distance from the lattice, the flow equal-
izes and the values of the local angles approach the mean value foe.

The nonuniformity of the field behind the lattice depends on the
inlet flow angle. With elther & decrease or a considerable increase in
the inlet angle), the nonuniformity of the flow at the outlet increases.
Particularly unfavorable is a decrease in the inlet angle.

The results of numerous tests of lattices- at small velocities 1n a
uniform weakly turbulent flow permit drawing several general concluslons
as to the character of the change in profile losses in lattices as a
function of the perameters defining the flow regime (inlet angle Bq

and Reynolds number Re) and of the fundamental geometrical parameters
of the profile and lattice.

A ptudy of the effect of the angle of inlet flow, angle of the pro-
file setting, and the piteh for fixed velues of Re shows that, in the
cases where a change in these magnitudes results in the formetion of ad-
verse pressure gradients on the profile, the boundary layer thickens,
and the transition from a laminar to a turbulent boundary layer moves
upstream. As a result, the friction losses increase. In certain cases
the boundery layer may separate in the reglons where diffusion occurs,

a circumstance which leads to & sharp lncrease in the profile losses.

A decrease in the inlet flow angle and an increase in the pitch increases
the likelihood of adverse pressure gradients. In thils connection, it
should be remarked that in impulse lattices the losses ag a rule are
greater than in the reaction type which are characterized by & more fa-
vorable (converging) pressure distribution over the profile. The above
considered tests showed that the minimum loss coefficlent in an impulse
lattice constitutes gbout 7 percent, while in the reaction lattice 1t

is about 4 percent.

Changes in By, t, and By bave an effect on the magnitude of the
edge losses.

The effect of the Reynolds number on the efficiency of the lattice
has not yet been sufficiently studied. The available data show that a
change in Re has different effects on the profile losses 1n the lat-
tice, depending on the inlet angle and the geometrical parameters of the
lattice. If separation occurs on the profile, the profile losses tend
to decrease markedly with an increase in Rep. For nonseparating flow
?bout the grofile, the effect of Rep for the reaction lattice 1is small

fig. 7-34).

L98¢
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7-9. FLOW OF GAS THROUGH LATTICE AT TARGE SUBSONIC VELOCITIES;
CRITICAL M, NUMBER FOR LATTICE

The fundamental charecteristics of the potential flow of a compress-
ible fluid in a lattice at subsonlc velocities 1s qualitatively the same
ag that of Incompressible flow. The network of streamlines V¥ = constant
and equipotential lines & = constant remsins orthogonal, but it is no
longer square. The veloclty at any point of the flow is

o= 82 _ Pody
- ds o dn

and, as & result, wvhen A® = A} = constant, then AS/An » p/po £1. In

the plane of the hodograph, the network of lines @ = constant and
¥ = constant 1s no longer orthogonal. According to the condition of
equality of the flow rate shead of and behind the lattice, we have

clplt gin Bl = czpzt s8in BZ

For ecq < co, the projection of the velocity e, on the normal to the
axis of the lattice (czsin Bz) becomes larger than the same projection
of the veloecity c¢j. The distribution of the relative velocities

T = c/cz, in contrast to the case of the incompressible fluid, depends

on the absolute value of the velocity, or more accurately, on the Mach
number M at any definite point of the flow, for example, on Mp = cz/az.

An approximate method of estimating the veloecity distribubion over
the profile may be used to establish the characteristic regimes of the
flow about the lattice at subsonic velocities. The approximate method
is based on the circumstance that in modern turbine lattices of high
s0lidity the flow between the profiles may be considered as a flow in a

channel.14

‘fhe flow veloclty in an Interblade passage of constant width and

 curvature (fig. 7-35) can be determined in & particulaerly simple manner.

A comparison with more accurate theory shows that for a perfect gas the
velocity distribution across the channel approximately satisfies the
equation )

¢ = == Cop (7-51)

erne method considered, proposed by A. Stodola, was developed sub-
sequently by G. Y. Stepanov.
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and in particular
_ Ren
®bol = Rpoy Con

The velocity on the convex side of the profile c,, cen be deter-
mined from the equation of continuity

Rboz
c1p1t Bin By =f cp dR (7-52)
R :

cn

In equation (7-52) it is convenient to transform to the nondimensional

functions q and A
1:{boZ
qlt sin Bl = q dR
R

cn

Using expression {7-51), we obtain finally

Abol

Mool )
q_l-t sin By = chch q d(i-) = chchI_l (7_55)

Computetion of the integral I for small subsonic velocities gives (the
constant of integration is omitted)

where

L
k + 1\t
ml=l 5

For a ges with kX = 1.4 we obtain

-1 1 23 11 2.2 .1 2.4 N/ 242
I, = my E:osh 52_7\ - (1—5- -5 mgA™ + g mzx) 1 - m5X (7-55)

where

L98¢
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For k = 4/3 we have

1,3 2,2 3 44 1 6.6
Iz = ml(ln -i.+ 3 moA” ~ z moX” + 5 mzl) (7-586)

If the computed function I is used, the equation of continulty can be
written in the forml®

(7-57)

where I,, by equation (7-54) or (7-55) corresponds to A, and Ty,g
corresponds to A . =R_/R X% .

It is possible to apply the process of successive approximations
for computing an by equation (7-57), since the expression in paren-.

theses depends 1little on an. In the first approximstion

(1) MEsinfy v
N =R (7-58)
cn R._1n ‘bol
cn R en

T%e?, in the following approximation, I,, and Iy, are determined from
1

A
cn

qlt sin Bl
S ; (7-59)

1
ch Ibol - Icn

and so forth. For A,, < 0.5 the first approximation (7-58) is suffi-

cient. The solution of equation (7-57) is conveniently represented in
the form of the 7raph shown in Pigure 7-36, which gives the magnitude
(

Qop = Iyt sin By/(Ry oy - R,,) &8 & function of ch/Rboz for various
values of Agy,. . :

A critical value Qi and a corresponding Ajx or Mpx denote
critical flow in the lattice; that is, a condition where ch = 1. In
the curved chamnel for which ch/Rbol < 1, the graph in figure 7-36 in-
dicates that the meximm flow is attained for some Xq > Ajy.

1SwacA note: Subscript cn refers to convex side, bol *to concave
side.
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The above described method can also be applied for finding the ve-
locity within an interblede passage of variable width and curvature. .
For this purpose it 1s necessary in the section of interest to inscribe
circles as shown in figure 7-37 and to determine thelr diameter and also

the radii of curvature Rén and Rﬁoz at the points Pf tangency of the
circles. For computing the velocities M\ , and Ny,p, formulas (7-58)
and (7-59) maey be used substituting, for example, :

) 1
Ren = Rens Bpoy = Bep T 2

L38¢

or
R R/
en cn
R - R = 8] ————— o ———
pol en > Bpor  Ruol

or Ryoy = Byoys Ren = Bpoy - 2. The differences in the values of Ay,
and Ay,3 Obtained in each case characterize the error of the applled

method. As an example, in figure 7-37 are caompared the resulis of the £
exsct solution (in the flow of an incompressible fluid) with the results

of computstions by the degcribed method. The satisfactory agreement of _ Coe-
the values of the velocities thet 18 observed also in the other exanmples
attests to the feasibility of applying this method for preliminary

computations.16 - B e

Let us now consider flow of a gas through a reactlon lattice when
the velocities are nearly sonic. For a critical value oﬂ_ Mo = Moy at

a certain (eritical) point of the profile, the critical velocity is
reached. With further increases in M, the pressure distribution aehead _

of this critical point chenges lititle. The pressure distribution behind

the point of sonic velocity changes considerably. In the so-called dif-~
fusing (i.e., for. subsonic flow) region behind. this critical point,

there is an increase in the supersonic velocity: -

The experimental determination of the critical values M,y shows

that its magnitude largely depends on the geometrie paraméters of the
profile, the lattice, and the direction of the flow at the inlet. In a

16mnis method of computing the flow in a channel was based on the
approximate determination of the length of the potential line and on the
assumption that the distribution along it of the curvature.of the stream-
lines differs little from the case of vortex flow. With a_certain com-
plication of the computations, this method can be rendered more accurate
by the successive refinements 1in estimating the distribution of curvature.
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reaction lattice for an entry angle By = By,, the values of Mpy de-

crease with Increase of pitch because the local velocities on the con-
vex surface at the points of maximum curvature increase. 1In figure 7-38
are shown the curves of maximum velocities on the back of the profile as
a function of M,. From these curves the values of Moy can be deter-

mined. For 1 > M; > My on the convex side of the profile, local re-

gions of supersonic veloclties are formed, the boundaries of which are
the lines of transition (M = 1) and a system of weak shocks.

Experiment shows that the supersonic zones may arise simultaneously
in the flow region adjoining the trailing edge and the boundaries of the

weke. Because of the lowered pressure behind the trailing edge, the ve-

locities of the particles leaving the upper and lower surfaces (outside
the boundery layer) increase. This accelerstion may lead to the forma-
tion of zones of supersonic veloclty adjoining the boundaries of the
wake. TIn correspondence with experimental data obtained at a small
pitch, the supersonic zones are formed first at the trailing edges them-
gselves and then progress to the more curved part of the convex side of
the profile in the interblade channel. TFor a large pitch, on the con-
trary, supersonic veloclties arise first in the channel adjoining the
convex surface of the blade. This is confirmed by the results of meas-
urements of the pressure behind the trailing edges and of the minimum
pressure on the convex surface of the profile in lattices of various
pitches.

The critical values of the number Mz* are shown in figure 7-39
for Bl = B1n @s & function of the pitch for a reaetion lattice. Tt

is seen from the graph that for each lattice there existe a pitch %* -
for which the critical velocity is reached simultaneously on the back
and behind the trailing edge of the profile.

Tn an impulse lattice,l’ the critical M number is lower than that
of a reaction lattice, thls fact 1s a result of the greater curvature of
the impulse profile. Local supersonic regions in the impulse lattice
may arise, depending on the inlet angle near the leading edge, on the
convex surface and at the tralling edge.

The grephs shown in figures 7-40 and 7-41 characterize the effect
of the number M2 (and also Mi) on the pressure distribution over the

profile for the two fundamentael types of lattice. With an increase in
M2, the sbsolute values of the pressure coefficients increase. The
characteristic points of the pressure diagrem (points of minimum pres-

sure) are displaced in the direction of the flow. For small angles By

L7%or the impulse lattice the critical M number is sometimes re-
ferred to the inlet velocity. .
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and large numbers My, experiment shows the displacement of the branch
point O7 along the concave surface of the profile.

The effect of compressibility shows up more markedly on the convex
surface, where the pressures chenge more rapldly; the pressure gradient
along the convex surface increases. Correspondingly, the flow in the
diffusing region on the convex surface also changes. Since the minimum
pressure on the profile decreases, the pressure gradlent in the diffus-
ing region of thils surface increases. The pressure ¢hanges particularly
sharply on the convex surface near the nartrow sectlon of the channel.
Simllarly, but more sharply, the effect of the compréssibility reveals
itself in the pressure distribution in an impulse lattice.

A change in the inlet flow angle st large supersonic velocltles in
an impulse lattice sharply affects the pressure distribution, perticu-
larly at the inlet part of the profile (fig. 7-42).

7-10. PROFTLE LOSSES IN LATTTCES AT LARGE SUBSONIC VELOCITIES

The results of experimental investigation permit estimating the
change in the profile losses in varilous" lattices at subsonic and neaxr
sonlc velocities.

For M, < Moy, with increasing flow velocity, the effect of the

compresgibllity on the losses due to friction depends on the one hand
on the change in the pressure distribution over the profile. Increas-
ing the velocity increases the diffusion on the convex surface and,
hence, increases the losses. On the other hand, increasing the veloe-
ity changes the velocity distribution within the boundary layer 1tself;
and this tends to. decrease the losses.

The investigation of the wake at large subsonic velocities shows
that the pressure behind the trailing edge drops with increasing value
of M,; this behavior is particulary acute when the velocity is approxi-
mately sonic. In figure 7-43 1s shown the dependence of ﬁkp on Mé
' for.a rounded trailing edge. It is seen that with an increase in M,
the value of P decreases and reaches s minimum value at
My =~ 0.9 - 1.0. With a further increase in My, the pressure behlnd

the trailing edge increases. The intensity of the vortilce behind the _
trailing edge and the width and depth of the wake are increaged (fig.
7-44). At the same time, for M, <1, the extent of the smoothed out

part of the flow behind the lattice increases.

© JORC
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For en epproximate estimate of gkp at large subsonic velocitiles,
formula (7-48) may be employed, substituting the test values of Brp

(fig. 7-43). Thus, taking into account the fact that the trailling-edge
losses increase, with an increase in M,, the character of the change

of the coefficient of profile losses as a function of M, 1s determined

by whichever of the above-mentioned factors is the deciding one. In the
final analysis, this answer depends on the geometric parameters of the
profile and lattice. o

In reaction lattices the approach to near sonic velocities while
Mo < Moy does not lead to any considerable increase in the losses 1if

the flow In the interblade chamnnel is wilthout separation.

We recall that the reslstance coefficient of a single profile
sharply increases in the zone of near sonic velocities. In the flow
about a single profile, the local shock waves have a considerably greater
intensity, and in many cases the ¥low separates to the impairment of the
flow. The energy losses in the local shock waves of a lattice are not
large, and they evidently do not appreciably increase the loss
coefficient.

In a reaction lattice, thanks to the converging flow, the locel
shock waves within the channel do not, as & rule lead to separation. In
those cases where the flow separates at supersonic velocities, however,
the loss coefficient increases more rapidly with increase In Ms.

Figure 7-45 gives [ curves for several reaction lattices consist-
ing of different profiles gnd for two impulse lattices. We note that
since the test lattices had different profiles, the dotted curves in fig-
ure 7-45 do not cheracterize the effect of pitch alone.

The effect of the incompressibility on the profile losses is more
marked for impulse lattices. The curves in figure 7-45 clearly confirm -

this conclusion.18 It should be emphasized that, for large velocifies, a
change in the inlet angle has a particulerly marked effect on the loss
coefficient in the impulse lattice gp. In passing to large inlet angles

(Gl > Bln), the losses in the impulse lattice decrease. o -

18The results of the test were obtained on an apparatus with con-
stant back pressure. With increase in the number M, there 1s & simul-

taneous increase in Re,. As was pointed out in the preceding section;tf
the increasse in Rey; 1leads to a lowering of the losses. It mey be as-
sumed that for Re, = constant the change of gp as a function of M,
would be scomewhat sharper.
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Detailed investigations of the flow structure show that an 1ncreése

in M, 1leads to an increasing nonuniformity of the field behind the “

lattice (figs. 7-46 and 7-47).

Analysis of the effect of compressibility on the flow structure in
lattices permits drawing the conclusion that the optimum piteh of the
profiles decreases as the velocity increases. With decreasing piteh,
the nonuniformity of the distribution of the flow between the blades 1is
reduced.

Of practical interest, is the change of the flow direction behind
the lattice as & function of M,. Tests show that for Mo, < Mpy the

compresgibllity has only a slight effect on. the magnitude of the mean
angle behind the lattice. Tor the majority of reaction lattices, there
is first noted a certain decrease and then an increase in B, with in-

crease in Ms. TFor M, > Moy, the mean angle as & rule increases with
increase in Mp (fig. 7-48).

7-11. FILOW OF A GAS THROUGH REACTION LATTICES AT
SUPERSONIC PRESSURE TROPS -

In conventional gulde and reaction lattices, the flow veloclties
at the inlet are subsonic; the transition to supersonic velocities occurs
in the interblade passgages. We will first consider the fundamental prop-
erties and structure of the flow in plane reaction lattices for super-
sonic pressure drops when ' -

pz/Poz > By

The successive change of the supersonic regimes of the flow in a
lattice is shown schematicelly in figure 7-49. In the narrow zone of
an interblade passage the critical velocity is established.l® Behind
the trailing edge the pressure is below critical. In the flow about the
point A (fig. 7-49(a)) the pressure drops and the fan of expansion ABC
fall on the convex side of the neighboring profile and are then reflec-
ted from it. The initiael and reflected expansion of wdaves overexpand

the flow; that is, the static pressure behind the wave ABC is less than

19Tne transition surface coincides approximately with the narrowest
section of the passage. Actually, as a consequence of the nonuniformity
of the flow in the converging part and the effect of viscosity, the tran-
sition surface'has a certain curvature and is displaced upstream.

198
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the pressure at infinity behind the lattice. The further development
of the flow depends to a considersble extent on what pressure is estab-
lished behind the trailing edge or AE. The-bounding streamlines of the
gas leaving the concave and convex surfaces of the profile approach each
other and are then sharply deflected at a certain distance behind the
edge. At the boundaries of the initial part of the wake, a system of
weak shocks arises which merge with the oblique shock FC, which is
formed at the points of discontinuity of the wake.

The oblique shock interacting with the boundary lﬁyer on the convex

surface of the profile is reflected?® and again impinges on the trailing
wake. Depending on the mean Mkp number in this section of the wake,

the reflected shock either intersects the weake (Mkp > 1) or is reflected
from its boundary (if Myp < 1). Thus, the flow moving along the convex

surface of a profile successively passes through the primary and reflec-
ted expansion waves and the primary and reflected shocks. '

The behavior of the bounding streamlines in passing off the edge
dependes essentially on the ratic of the pressures at the point D to the
pressure behind the trailing edge. If the pressure of the flow at D is
greater than that behind the edge section, then there is formed at the
point D an expansion wave; and the flow sbout the edge is improved. The
stresmline leaves the profile not at point D, but at point E (fig.
7-49(a)). On account of the curvature of the wake EF and the rotating
of the flow near the point E, there arises behind the expansion fan DIK
a system of weak shocks merging with the curved shock FH, which arises
at the point of turning of the boundary of the wake F. The system of
the two shocks FC and FH forms the tralling shock of the profile.

If on passing through the system of waves, the pféééuré of the flow = -

near the point D 1s below the pressure behind the edge, a shock arises
at the point D. In this case the wake lncreases. : L
On passing through the system of expansion waves and oblique shocks,
the individual streamlines are multiple and veriously deformed. On in-
tersecting the primery rarefaction wave, the streamline a-a deflects,
turning by & certain angle wlth respect to the point A (the angle be-
tween the tangent to the streamliine and the axis of the lattice in- '
creases). The reflected wave somewhat decreases the angle of deflection

2OThe reflection remains normal even at large angles of incidence
of the primary shock (82-* s*), since the interaction of the shock with

the boundary layer on the convex surface occurs in the zone of negafive'_
pressure gradients (the effect of the reflected rarefaction wave).
Within a wide range of velocities, the separation of the layer in lat-

tices with relatively small pitch is not observed. _ T
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of the streamline. On intersecting the primary shock, the streamline i1s

sharply deflected in the opposite direction (the angle of the stream- -
line with the axis of the lattice decreases). In passing through the
reflected shock CP, the angle of the streamline with exis of the lat-
tice again increases. N

With an increase 1n the pressure drop through the lattice, the
flow spectrum behind the minimum area section changes; the intensity
and character of arrangement of the rarefaction waves and shocks change.
The extent (and therefore the intensity) of the rarefagtion wave in-
creases. The angles of the primary, reflected, and edge shocks decrease.
The point where the oblique shock FC falls (point ¢) is displaced down-
stream (fig. 7-49(b)). In correspondence with this, the character of
the deformetlion of the individusal streamlines® likewise changes. With
increase in o the mean outflow angle increases.

L98¢

The expansion of the flow within the confines of the latiice ends
for a certain relation of the pressures ep = £€g. For flow conditions .

near this limiting regime, the primary shock is curved and forms a cer- ' »
tain small angle with the plane of the outlet section. The exact de- -
termination of the velue &g 1s therefore difficult. The limiting re-. -

gime may be considered that for which the primsry shock falls at the
point D of the edge section (fig. 7-49(c)).

If &5 < eg, the expansion of the flow continues beyond the lat-

tice (fig. 7-49(d)). The system of shocks at the trailing edge remains
essentially as before, but the wake behind the- edge is considerably
diminished. The left branch of the tail shock (the shock FC in fig.
7-49) falls in the subsonic part of the wake of the nelghboring profile
and deforms its boundary; the pressure behind the edge increases. The
intensity of the shock increases at the point D', and in certain cases
separation of the flow occurs on convex surface of the blade (point D')

The wake behind the edge is greatly weskened. In sﬁch regimes
separation is observed mainly in lattices with relatively large piltch.
It should be remarked that for e, << eg the separations vanish as a

rule. The primary shock falls in the supersgonic part of .the wsake (fig.
7-49(e)). The pressure behind the edge drops, and the separation on
the back is eliminated. Thus, & very characteristic property of the
regimes €5 < &g 1s the interactlon of the primary shock with the wake

at the edge.

The shock FC passing through the flow field behind the outlet sec-
tion sharply decreases the angle of deflection of the flow. This 1is -
particularly well marked by the deflection of the wake near the edge.
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The above considered schemes of flow are illustrated by photographs
of the flow spectra behind the throat and at the exit from the reac-
tion lattice (fig. 7-50). There is here seen the fundamental system of
waves and shocks, the deformation of the weke behind the edge for dif-
ferent regimes, and also the interaction between the waves and shocks
with the neighboring profiles and wakes.

The flow spectra are given for two lattices: T = 0.543 (fig. 7-50)
and T = 0.86 (fig. 7-51). The photographs show that in the lattice of
small plteh the flow is void of sepsration for all regimes. In the lat-~
tice of large pitch (T = 0.86), separation of the flow on the back of
the profile occurs for the regimes &5 = 0.288 - 0.258. TIn figure 7-51

(photographs (a) and (b)) there is clearly seen the vortex structure of
the trailing weke and the considersble nonuniformity of the flow behind
the lattice,

Figure 7-52 gives the pressure distribution behind the throat omn.
the convex surface of a proflle in a reaction lattice for varlous ratios
62 = PZ/POI' The curves ghow the considerable nonuniformity of the pres-

sure on the back of the blade. Behind the throat section (i.e., at the
points 2 to 6) the expansion of the flow may be observed; the pressure at
these points is lower than the pressure behind the lattice. The expan-
sion ends with a sharp increase in the pressure at those points on the
convex surface of the blade where the incident and reflected shocks in-
teract with the boundary layer. With an increase in €5, the zones of

meximum expansion on the convex surface as well as the sharp increase of

preasure in the shocks are both displaced along the back toward the trall-
ing edge.

In the regimes of limiting expansion (82 = es), the pressure’aiong

the back of the profile continuocusly drops. The pressure behind the ex-
pansion waves at all regimes &3 2 &g decreases as the pitch increases.

The effect of the pitch on the intensity of the shocks behind the
throat is seen in figure 7-53. The character of the curves A@z/pi min

(A@z is the increase in pressure through the shock vave impinging on

the convex surface of incidence of the shock wave) depends on the pltch
With an increase in T +the maximum intensity of the shocks at first de-
creases and then increases. At the same time, the maximum A@z/pl min
shifts in the direction of higher values of &gp-

The detailed investigetion of the flow in the sections behind the
lattice shows that the distribution of the angles and the static pres-
sures is very nonuniform. In figure 7-54(a) is shown the distribution
of the local angles of deflection BZi - an over the pitch of the lat-

tice for two regimes. The upper curve corresponds to the flow conditions:

i
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shown in figure 7-49(c)(€; = &g). Ahead of the primary shock, the flow

deflections are influenced by the expansion waves; the angles of the
gtreamlines slightly decrease. At X = 0.4 +there is a sharp decrease
in PBgy due to the primary shock. At X = 0.4 the local angles vary

less sharply up to X = 0.9.

From figure 7-54(b) it is seen that the distribution of the static
pressures over the pitch is likewise very nonvniform. The static pres-
sure varies with the system of waves and shocks fraversing the section

investigated.

A large effect on the spectrum of the flow behind the lattice is
exerted by the setting angle of the profile (i.e., the angle at the
exit). With a change in the angle an the gedmetbtrical parameters of

the section behind the throat vary. For the same pressure drop in the
lattice (&;), the arrangement of the fundamental system of waves and

shocks in this section of the lattice varies.

With increase in an the length of the wall of thé sectlion BD

(fig. 7-49) is shortened (the pitch 1s unchanged); the relative effect
of the primary expansion wave increases; the angle of deflection in-
creases with increase in fon.

The equalization of the flow behind the trailing edge for Mp; > 1

oeccurs at greater distances from the lattice than for Mz < 1. The vari .

ation of the distribution curves of poz/pol along the pitch as a func-
tion of ¥ for Mp = 1.58 1is shown In figure 7-54(c).

We note that the equalization of the flow at supersonic velocities
is accompanied by a decrease in the static pressure behind the trailing

edges.

Supersonic reaction lattices are often used as nozzle lattices (for
€s < €y )(fig. 7-55). The interblade passages of such a lattice form

supersonic nozzles. At design conditions supersonic velocities may be
obtained in such lattices without any essentisl deviation angle of the
flow. ,0On the other hand, expansion may arise in the overhang section
of the lattice at design conditions. The expansion wave is formed as a
result of the lowering of the pressure behind the trailing edge. In the
flow about the trailling edge, es in the subsonic lattice, & second shock
at the trailing edge erises. Thue, the same genersl system of shocks
and expansion waves, although they are weaker, is meintained also for
the nominal operating regime of the supersonic lattice.

193¢
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For the off-design regimes (&5 < 82comp)’ the fundamental system

of waves and shocks is organized in a manner similar to that shown for
lattices with converging channels. If, however, the ratio of the pres-
sures &, becomes larger than the computed one, the shocks are moved

upstream into the interblade channel, the same way as they are in the
one-dimensional supersonic nozzle. It should be borne in mind that,
for the same value of &5, the shocks in the channels of the supersonic

lattice are somevhat weaker than in the Laval nozzle and are situated
near the outlet section.

The flow structure in a supersonic reaction lattice is shown in
figure 7-56. At increased pressures behind the lattice, a system of
two oblique shocks is situated within the channel (fig. 7-56(a)). With~
an increase in pressure behind the lattice the shocks move toward the
outlet section (figs. 7-56(b), (c), and (d)). Near design operation
(figs. 7-56(e) and (f)) primary and reflected shocks intersect on the
convex surface; behind the lattice a trailing-edge shock may be seen.

The pressure distribution over the profile (fig. 7-57) agrees with
the flow picture. At regimes where the relative pressure &g is greater

than computed, the pressure rises through the system of shocks. It is

characteristic that there is no transverse pressure gradient in the chan-
nel between the blades of a supersonic lattice.?l The veloelty fileld be-
hind a supersonic lattice possesses very great nonuniformity for sz-< €
(fig. 7-57(b)). S

7-12. IMPULSE LATTICES IN SUPERSONIC FLOW

When the velocities are practically sonic & A-shaped shock is formed
on the convex side of each profile of an Impulse lattice. This systen
of shocks of smsll curvature merges to form the bow wave for ‘the neigh-
boring profile (fig. 7-58(a)). Immediately behind each how wave the
flow 1s subsonic. This scheme of flow evidently can take place only in
the cage in which the flow accelerates behind each bow wave and then
reaccelerates to the veloclty M; ahead of the following shock.,

There acceleration of the flow occurs in the expansion waves form-~
ing in the flow about the leading edges. As the velocity of the oncom-
ing flow increases, the bow becomes curved and moves toward the inlet
edges of the profiles (fig. 7-58(b)). It masy be assumed that for veloc-
ities corresponding to the flow scheme in figure 7-58(b) the flow behind -

.ZlIt mey be assumed that the tip losses in such lattices are small
even with small blade heights. '



62 ' NACA TM 1393

the shocks will be turbulent. Becsuse the effect of.profiles is commu-
nicated upstream in the subsonic region, & nonuniform velocity distri-
bution is established behind the leading shock. The velocities vary
periodicelly in magniiude and direction along the lattice.

For a certain sufficiently large value of My fhe right branches

of the shocks merge forming a continuous wavy-shaped.shock (fig. 7-58(c)).
The left branches of the bow wave are turned into the concave surface
of the profile. With further increase in the velocity M; the angles

of the branches of the bow waves decrease; the shocks approech the inlet
edges of the lattice. In certain cases at the inlet %o the interblade
channels there is formed the system of shocks shown 1A figure 7- 58(d)

In the system of intersecting and reflected shocks the pressure
increases.

The envelope of this system of curved shocks lowers the velocity
of the flow to a subgonic value. Supersonic. velocitles arise again as
a result of the expansion on the convex surfece. The flow about the
trailing edge here occurs with the formation of the known sysftem of ex-
pansion waves and shocks. Only for very large supersonic veloecitles at
the inlet does the flow remsin supersonic over the entire extent of +the

interblade channel.

The above consldered schemes of formation of shocks at the inlet
to an impulse lattice are confirmed by photographs of the flow. In fig-
ure 7-59 there are clearly seen the changes in the shape of the bow
waves that sccompany increases in M.

The pressure distribution over the profile at supersonic velocities
(fig. 7-60(a)) shows that for M; < 1.5 the velocity over a large part
of the concave surface is siubsonle. For M; > 1.12, the velocities are
supersonic at all points on the convex surface. The point of minimum
pressure on the back in the overhang section is dlsplaced with increas-
ing M; toward the outlet section of the lattice.

The investigation of the flow behind an impulse lattice at super-
sonlc velocities shows that the distribution of static pressures, ve-
locitles, and losses over the piteh is very nonuniform.

A change in the inlet angle of the flow greatly affects the struc-
ture and intensity of the bow waves, the pressure distribution over the

profile, and the flow distribution between the wakes beh;nd the lattice. _.

The form of the inlet edge of the profile and angle By, have an

effect on the structure and, in particular, the intensity of the bow
waves. Ahead of an impulse lattice consisting of profiles of small cur-
vature. (large angles of the inlet edge B1n) an over-all wave-shaped

LBRC
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shock is formed instead of the system of shocks shown in figure 7-58(b).
The shape of this wave ahead of a lattice of plates for varioug inlet
angles 1is seen in Tigure 7-61l. Since the formation of such a shock
ahead of the lattice is possible in the case where Mysin By > 1, the

number M; corresponding to the type of shock considered increases as ,
By decreases.

7-15. LOSSES IN LATTICES AT NEAR SONIC AND SUPERSONIC VELOCITIES

The above considered properties of the flow of a ges in plane iaté
tices of different types at large veloclties permit an analysis of the
behavior of the over-all characteristics of lattices accompanying a

change of velocity of the flow (M} or Mp). 2z Figure 7- 62(a) shows

curves of the loss coefficients for reaction lattices as a funption of
My and the inlet flow-angle By. Figure 7-62(b) gives similar curves -

for impulse lattices.

The curves show that, depending on the entry angle, the pitch, and
profile shape, the loss coefficient of reaction lattices may increase
or decrease in the region of transonic velocities (0.8 €M < 1.2). A
marked increase of the losses in a lattice occurs at supersonic veloc-
ities (My > 1.2). The velue of My for which this increase is ob-

served decreases as the pitech is increased. “T“_

The loss coefficients of supersonic lattices increase very sharply
with an increase in M2 and reach & meximum value when the relative

pressure in the lattice is nearly critical (Mz = 1). With a further in-
crease in M;, the coefficient gp decreases. The losBes in & super-

gonic lattice are & minimum near the computational (design) value of
My. For M, > M2comp the loss coefficient increases with the velocity.

From a comparison of the loss curves in a reaction supersonic lat-
tice (fig. 7-62(a)) with those in a one-dimensionel supersonic nozzle,
it can be concluded that the variation of gp with M; 1is qualitatively

the same in both cases. It follows that the shocks in the interblade
passages and the separations end vortex formations associated with them
have the main influence on the effectiveness of such lattices at off-
design regimes. The lowering of the losses in the lattice for M<s 1

is expleined by the fact that at such regimes the wave and vortex_loéées

227ne dats presented in the present section refer only to lattices
of definite geometric parameters.
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decrease and then (for small MZ) entirely vanish (the interblade pas-

sage works as a Venturi tube). As in the case of the gingle nozzle, the.
losses in a supersonic lattice at the design and off-design reglmes vary

as a function of the passage parameter Fl/F*'23 With an increase in

thils parameter, the losses for design operation decrease somewhat and
increase for My < M2comp'

Comparison of the losses in different reaction lattices leads to
the conclusion that in a wide range of velocities, lattices with con-
verging interblade channels possess a higher effectiveness than super-
sonic lattices. ZEvidently supersonic lattices are sultable for appllcsa-
tion in the range of large supersonic velocities, but they are only ef-
fective for the case where such turbine lattices will always operate
near design conditions. The points of intersection of the curves (the
points A end A' in fig. 7-62(a)) permit establishing ranges of rational
application of the two types of lattices compared:

The losses in an impulse lattice at subsonic velocities incresase
with increase in the velocity more sharply then those in reaction lat-
tices, and they reach maximum values for M; = 0.8 to 0.9 (fig. 7-62(b)).

A further increase in the velocity leads to a certain:lowering of the

loss coefficient. Thus, in the zone of near sonlc velocitles
My = 0.9 to 1.3 the coefficient Cp of an impulse lattice decreases and

becomes a minimum at M1 = 1.2 to 1.4. For ML > 1l.4. with increasing ve-

locity, Cp again increases .24

The lowering of the loss coefficient in an impulse lattice at Bmall
gupersonic velocities 1s explalned by the Improvement of the flow about-

the inlet edges and on the convex surface of the profile. For -
My = 0.7 to 0.9 flow separations are formed near the inlet part and on

the convex surface of the profile; the points of minimum pressure and
separation are dilsplaced downstream when supersonlc velocities are
achieved since the flow in the channel is converging behind the bow waves
(fig. 7-60). Also change in the inlet angle has a particular effect on
the magnitude of the loss coefficient at supersoniec velocities for im-
pulse lattices. TFor inlet angles less than By, (a "blow" on the concave

Z5NACA note: Area ratio, see fig. 7-62(a).

24The data presented refer only to the given lattiae. With a change
in the shape of the profile and the pitch, the character of the depend-
ence of Cp on M mey vary.

R Ta Tl
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surface of the profile) the loss coefficient increases. The mean angle
of the flow behind the lattice increases with an increase of velocity
at supersonic velocities {deflection behind the throat).

7-14. COMPUTATION OF ANGLE OF DEFLECTION OF FLOW IN OVERHANG
SECTION OF A REACTION LATTICE AT
SUPERSONIC PRESSURE TROPS

There exist several methods of determining the angles of deflectidﬁ'
of the flow behind the throat of the lattice. The most widespread meth-
ods of computation ere based on the one~dimensional equations of flow.
Assuming that the field of flow in the sections AB (fig. 7-63) and EF
(chosen at a large distance behind the lattice) is uniform and neglect-

ing the losses in the lattice up to section AB, the equation of contin-
uity may be written in the form R

Kﬁpzcz = Efpzwczmsin Bow
or, bearing in mind that for very thin treiling edggs
AB = FF sin 32n=téin Bon
we obtain
pocosin B, = p, ¢, sin B, -

We divide both sides of this expression by Py 8] 3 ‘then

in B = EQE sin B
92817 Pon = Gpa 3 217 Po

Taking into account that Boy, = Boy + 8, where © 1is the angle of

inclination of the flow in the overhang section, we arrive &t the
equation

8 = erc sin (32_ o POL sin By - Bop ' (7-60) -
ana P02

In the above equation ds and 4, Bare easily expressed in terms

of the pressure ratios pz/pOl and pzm/poz.
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For a reaction lattice, with 'pzw/p02‘<5*, the flow parameters in
the section AB will have their critical values when 4> = 1. For a
supersonic lattice qy = F*/Fl < 1. By iéhoring the losses, Bals rela-

ted the flow at section AB to that at DH in a form similsr to that of
formuls (7-60)

sin B
8 = arc sin (—————EE) - Bop (7-60a)
q2q:

With account taken of the losses, formula (7-605) can be written as

Replacing dpe by Mgy and gp and teking into sccount the fact

that
X k - 192
PoL_ (k-1 L0\ 1 -5 Teel - 6p)
Poo 2 2t5p , _E-1.2
Tk +1 M2t
we obtain after transformations
B L K- 1.3 .
k-1 1 -5 th(l - )
8 = 5 2 k 4+ 1 P 5
arc sin|(—77 A sin Bop| - Bop
Xk -1.2 E-I
_ >‘2t<1 'k+17‘2t> Vvi-&p

(7-60b)

Whence, it follows that with constant value of the theoretical outflow
velocity hp:, the angle of deflection increases with an increase in the

losses. According to equation (7-60a), the angle of deflection & de-
pends not only on the outflow velocity and the losses but alsc on the

angle Bopn.

Formula (7-60) holds only for €2 2 €g» that ig, up to the point

for which the primary expansion wave impinges 6n the convex surface of
the blade. The sngle of deflectlon corresponding to the limiting expan-
sion over the convex surface of the blade is approximately determined by

the relation
Og = apg - Boy

© oy
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where ap,g 1is the angle of the characteristic colnciding with the plane
AD.

The pressure in the ocutlet section of the lettice for the regime
considered may be determined by the formula '
2k

k+1
eg = &, (sin By,) (7-61)

In fact, since

sin B
sin(Bzn + BS) = sin opg = M;S = qzszn

we have
k-1

—

£y k +1
(E—S') sin an = 2 CS

[ T
=

Solving this equation for &g, we arrive at formula (7-61).

Meking use of the known relation between o end € and substitut-
ing in the particular case €&, = &g, we obtain ' )

1

(E_:_l)z
— S - Bpy  (7-62)

k+1
(sin Bop) -

Bg = arc sin

—2
k+1

For the one-dimensional case of infinitely thin traiiing edges and
straight convex and concave surfaces, the exact solution mey be obtained

by simultaneously solving the equations of continuity, momentum, and
energy.

By the equation of energy,

2
P2 k-19% P2y k-1c°
__+_______=_+__._._2_
P2 k2 o k

From the condition of continuity,

Py g, sin(Bgy + B)

. Po, N 8in By,
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Substiltuting this expression in the equatlon of energy, we obtain

2
Po. Aoy sin(szn + 8) k - 1 o
Po Ap sin Boy, + 2k Ao (7-63)

k +1
2k

-
k

We write the equation of momentum using the compohent in the direc-
tion of the trailing edges in the form

pzcgt sin Bo, + ppt sin By, = pzmc%wt sin Bo,cos8 & + Poet sin Boy,

or
chzi-*(‘)\zwcos 5 - 7\2) = 'pz - sz )
Since
0, %, = Q4,005 = ke QD
272 % 2L % * =201
we ¢btain
A - Do, B '
Gl kz P2= 1) 01 . (7-64)
Ao e3Py jcos

If in the section AB the parameters are critical, then

Aow 1 €2 1
x;{g(l‘z;‘)”m

The last expression together with equatiovm (7-63) gives -

1 o 2
€5, COt Bo,tan B T ey
tan®s + ka T z zn —E f i =0
Bl L2 Lo
whence -
. 2 2 .
k 2w k +1 & kK % oot
\/(IE =T 5 °°° an) Tk - l(l " k - 1 &y °o% Pan
tan & = i . to
+ - —
€y

L98¢
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Approximately, for & € 10°, we obtein

& 2 '
(1 - _..2_.; tan B . -
k + 1. €y 2n

% = 7-658
7K ep oo ( )
T Ltk -

The above accurate solution obtained by G. Y. Stepanov permits de-
termining the wave losses in the lattice. The coefficient of wave losses
is expressed by the formula ’

or after substituting for XZ
& 2
(26 -2)+1]
1. ] *

Cp = — K1
k 4+ 1 k 2
. Fa—— 1l - & j]cos s}

For computing the flow behind the throat of the lattice, the method
of characteristics may be applied. We consider a lattice of plates of
small curvature with straight, infinitely thin trailing edges (fig.
7-64(a)) and set up the boundary conditions at the point where the stream-
lines coming off the two sides of each plate merge. The streamline 1-1 -
moving along the convex surface of the plate intersects both the primary )
and reflected expansion waves, while the streamline 2-2 coming off the
concave surface intersects only the primary waves. In the plane of the
hodograph the region of the flow in the section AB is expressed by the
point corresponding to the end of the vector A = 1 (fig. 7-64(b)). The

velocity of the streamline 2-2 after passing through the primery expan-
sion wave is determined by the vector Ay, while the velocity of the

streamline 1-1 after passing through both the primary and refiected waves
is determined by the vector XS' The boundary conditions nesr the point

A for two merging streamlines of gas are the conditions that the static
pressures are equal and the velocity vectors atre parallel. These condi-
tions are satisfied if the oblique shocks Ky and K, are formed at the

point A, the direction of these shocks shown in figure 7;64(8). If the
angle Bl is small, the primery shock K; may be considered as a char-

acteristic, while for computing the edge shock K, the method of char-

acteristics may be used. We here neglect the wave losses in the shocks
It is evident that the direction of the shock K; coincides with the
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normal to the epicycloid of the second family at the point d located at
the center of the segment bc. With this simplification of the problem,
the wake (which for an infinitely thin edge is considered to be between
the streamlines 1-1 and 2-2) in the immediste neighborhood of the point

A has the direction of the vector A, (the dot=desh line in fig. 7-64(a)).

The velocities and other parameters of the flow for the remaining stream-
lines are determined after computing the interaction of the primery and
reflected expansion waves.

The entlre region of flow behind the throat cen be divided into
three zones (fig. 7-64(a)): I - the zone of influence of the primary
expansion wave (for the lattice considered, this region trensforms into
a point), IT - the zone of interaction of the primary and reflected
waves, and III - the zone of influence of the reflected wave (in the
plane of the hodograph, this zone corresponds to the characteristic of
the second family be).

The region of interaction of the primery and reflected waves of
rarefaction (zone II) mey be computed once for all, using the minimum
value of the angle Bz,min= 7° to 10°. TFor any other atigle 52n>'52,min

the computation of the flow downstream of the throat is carried out in
the following menner. We draw the x-axis at the given angle to CB (fig.
7-64(c)) and find the mean pressure in the section AB = t

1 pt
Py = ;Ef Pg4dx
0

characterizing the regime of the limiting expansion. For all regimes
£, > pz/pOl > ps/pOl the zone of interaction IT will be bounded by the

broken characteristics, for example, AB', AB", AB™ . . . (fig. 7-64(c)).
To each value of the pressure drop in the lattice corresponds a fully
determined position of the points B', B", B". . . . Carrying out suc~
cessively the computation of the flow for. different positions of the
characteristics AB', AB", etc., we establish the distribution of the
pressures (velocities and local angles) over the pitch AB in the zones
II and TIT and obtaln the mean pressure behind the lattice

1 t
P = - pZidx
a,cp t 0

In this way the computation of the local parameters of the flow be-~
hind the lattice is conducted for the entire group of possible flow re-
gimes in the lattice, and the relation is established between the posgl-
tion of the points B', B", etc., and the pressure drop in the lattice.

L98¢
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The mean angle of deflection of the flow for a given reglme may be
obtained from equation (7-21):

t ) '
2\[; q \ysin (BZn + Si)dx
G .
J[‘ q;Nsin 2(By, + 84)dx
0 ;

tan(Bgn + Scp) =

where qy, Xi, and By are, respectively, the local reduced flow rate,
nondimensional velocity, and angle of deflection. -

For a lattice of profiles with finite thickness of the trailing
edges, the computation of the flow in the overhang section by the method
of characteristics is considerably more complicated. In this case it is
necessary to know how the pressure varies behind the trailing edges as a
function of the geometrical parameters of the profile and the lattice
and of the flow regime. Such a relation

BCI:_P_ £(My,%,7T)

can be established only experimentally. Then, replacing the actual lat-
tice by a lattice of planes, the trailing edges of which serve as the
gources of disturbances uniformly distributed in the field of sonic (or
supersonic) flow, the intensity of the expansion waves may be found.
From the boundary conditione at the edge the system of additional expan-
sion waves and shocks 1is determined.

An important advantage of the method of characteristics is the pos-
sibility of constructing the spectrum of the flow on the conveéx sgection
behind the throat and at different distances from the lattice and of de-
termining the nonuniformity of the field of velocitles and pressures in
different sections.

A comparison of the most widespread and accurate methods of comput-
ing the deviation angles with test data (for two reaction lattices) is
shown in figure 7-65. It is seen from the latter that, for lsttices of
small piteh and consisting of profiles with thin trailing edges, formula
(7-65) and the method of characteristics give reésults that satisfactorily
agree with experiment. For small values of 8(52 2 0.35) the equation of

continuity (7-60(b)) mey likewise be used for approximate computations.
For lattices of large pitch, only the method of characteristics gives re-
sults which ere in good agreement with experiment.
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7-15. CHARACTERISTIC FEATURES OF THREE-DIMENSIONAL
FLOW IN LATTICES

As was slready pointed out, the ring lattices of turbomachines con-
sist of radially arranged blades of finite helght (length) The shape
of the interblade passages of the lattlce varies in the radial direction.
In condensation turbines, lattices with varistle heilght blades are used.
The guide lattices are alwayvs shrouded. Rotating lattices are sometimes
designed without shrouds. .

These construction features of real lattices have an important in-
fluence on the flow. The phenomena observed in three-dimensional lat-
tices are not taken into account in the analyses of two-dimensional flow.
On the basls of test data we shall analyze the special features of three-
dimensional flow in a straight row of lattices. :

In these lattices secondary flows are formed near the tips of the
profile on the convex surface of the blade. The cause of formation of
gsecondary flows in the interblade channels of a lattice 1s the viscosity
of the gas and the transverse pressure gradlent arising from the curva-
ture of the channels. .

Because of the increased pressure on the concave surface of the
blade, the gas partlcles flow toward the convex surface of the blade
(fig. 7-66(a)). For sufficiently high ratios 1/a; (see fig. 7-66(b)),

the secondary motion of the gas over the céoncave surface is only achleved
with difficulty, because the particles must move over a long path over
which there is friction. Such a flow from the concave surface to the
convex surface of the neighboring profile is possible only in the bound-
ary layer along the end walls bounding the channel. The peripheral flow
of the gas in the boundary layer therefore starts on the concave surface
at the tips of the profile (near the end walls) and continues over the
end walls toward the convex surface of the blade. As experiment shows,
there occurs a nonuniform distribution of the pressures over the height
of the blade; the pressure is lower on the concave surface near the end
walls, while at the tips of the convex surface of the blade the pressure
is higher than it-is in the middle section. Along the end walls of the
channel, the pressure drops in the direction from the concave to the con-
vex side of the blade. At the. tlips and along the convex surface of the
blade, the boundary layer flowing from the end walls encounters the
boundary layer moving along paths parallel to the end walls. As a re- .
sult, near the tips of the blade and on the convex surface rapid growth
of the boundary leyer occurs; the thickness of the layer increases
sharply. In the majority of cases this leads to a local separation of

~
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the layer and therefore to the formation of vor'bices.25 At the same

"time, because of the motion of the boundary layer from the concave sur-

face to the convex surface of the blade, compensating flows are formed
at the blade tips which are directed from the convex surface toward the
concave surface. These flows, together with the boundary layer separa-
tion on the convex surface, form vortex regions (trailing vortex) near
the ends (butt faces) of the channel walls.

In this way, at the convex surface of the blade near the_tips, a
vortex pair arises consisting of two vortices whose direction of rota-
tion does not coincide with the direction of the ecirculation about the

profile.26 The vortices rotate toward one another in correspondence
with the direction of motion of the gas in the boundary layers at the
plane walls (figs. 7-66(b) and (c)) and induce a field of velocities
normel to the streamlines of the primary flow (fig. 7-66(d)), which leads
to a certain increase in the outlet angle of the flow from the lattice.

In the photographs of the wakes of the flow (fig. 7-67) there is
clearly seen the secondary flow of the boundary layer on the end walls.
Behind the points where the vortices arise, the secondary flow of the gas
continues to be associated with the boundary layers on the plane walls
and the convex surfsce of the blade; the vortices are enlarged toward
the outlet section. On account of the growth of the vortices, their
axes arrange themselves with a certain inclination to the plane walls.

At smell ratios Z/az, the vortex regions are propagated over the

entire section of the channel forming a vortex palr characteristic of
curved channels of square section. The over-all vorticity of the flow

sharply increases.

25Depending on the shape of the profile asnd of the interblade chan-
nel and also on the flow regime in the lattice (inlet angle, My and

Rep numbers) the separation of the boundary layer on the convex-surface

may not occur. Tests show that sepsration does not occur for large in-
let angles and small flow velocities.

26In connection with the question as to the mechanism of formation
of secondary flows in the lattice, it should be remarked that attempts
to make use of the theory and computation procedure of the induced drag
of a wing of finite span for determining the tip losses in lattices did
not give any essentisl results. The tip losses in a lattice and the in-
duced drag of a wing have a different origin. It is sufficient to state
that the tip phenomena in a lattice arise from the viscosity of the
fluid, whereas the formation of trailing vortices from the tips of a
wing of finite span are not directly connected with the viscosity; the
tip vortices of a wing should exist for the flow of an ideal fluid also.
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The experimental investigatlons confirm the occurrence of separation
and vortices in a row of stralght blades. The distributlon of the dyna-
mic pressure and the static pressure over the height of the blade near
the convex side in the nucleus of the flow and at the concave side in
the narrow section of the channel in figure 7-68(&) showe the character-
istic variation of these parameters in vortex regions. In the vortex
zone po and pi decrease, this decrease does noi_appear in the nuc-

leus of the flow or at the concave surface. In the outlet section of
the lattice the plcture of the distribution of . POi and pi remeins

qualitatively the same (fig. 7-68(b)). The zones of reduced values of
Pgi é&re displaced from the plene walls. The dips in the curves are

more merked. . S -

~_Janc

The separation of the boundasry layer on the back of the blade and
the formation of vortices are a source of considerable loss of energy,
particulary for relatively small blade heights. The change In the geo-
metrie parameters of the straight lattice and, in particular, of the re-
lative height and piitch affects the magnitude of the tip losses. r

With decrease in the height Ta the vortex regions approach each

other (fig. 7-69(a)) and are slightly shifted toward the side walls.
The strength of the vortices, within definite limits of the change of
Za, practiceally does not change. Only for Z € 2 1s there a notice-

able increase in the effect of the vortices in the nuclear flow (the val-
ues of pOi decrease). TFor lattices of height 1 < 1.7, the entire

flow in the channels is vortical and the pressure of complete stagnation
in the nucleus is lowered.

From this 1t follows that the absolute magnitude of the losses in
vortical regions does not change with decrease in the height of the
blades up to certain limits. The relative losses change in inverse pro-
portion to the height 1,. With increase in the pitch of the profiles

(fig. 7-69(b)) the strength of the tip vortices increases,; and there
occurs a certain displacement of the zone of meximum losses away from

the end walls.

A large effect on the tip losses is exerted by the curvature of the
interblade channels. As the curvature increases the losses increase.
This trend is particularly intense for lattices of small heilght.

The flow regime, that is, the inlet flow angle and thz Rep and M2
nurmbers, has an effect on the magnitude of the tip losses. With an in-
crease in the entry angle of the flow (fig. 7-70) the strength of the sec-
ondary flows decreases. We may note that at large entry angles the trans-
verse pressure gradient in the interblade channels decreases. At the same -
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time there is a lowering of the intensity of the secondary flow of the

boundary layer toward the convex surface of the blade, the thickness of

the layer on the back decreases and the vorticity losses decrease. _An ) —
a decrease in the tip losses, a fact which is evidently explained by

the decrease in thickness of the boundary layer. e

The investigation of the three-dimensional flow in lattices of
straight blades qualitatively shows the same change of the mean (aver-
aged over the pitch) loss coeffictents near the end wells for all lat-
tices. With an incressing distance from the end walls, the loss coéf-
ficient sharply decreases at first end at a small distance reaches the
minimum value beyond which it again increases. In the zone of lowering
of Cp there is found a decrease in the thickness of the boundary layer

on the convex surfaces and of the depth of the end dips. The ¢haracter
of the wvariation of gp over the height for short blades for different

velocities is seen in figure 7-71. The curves in figure 7-T71 show _ _ o -
clearly the decrease in CP with an increase in My for M; < 1.

In correspondence with the above-mentioned effect of the cur;sture
of the channels and the inlet angle, a certain relation must exist be-
tween the profile and tip losses. In lattices with large profile losses

there are found also increased tip losses.27 From a consideration of

the scheme of formstion of the tip losses in a straight lattice it fol-

lows that the measures teken to decrease the transverse pressure gradi-’

ent in the interblade channel and therefore in lowering the strength of

the peripheral flows in the boundary layers greatly decrease the tip

losses. Of great importance is also the character of the velocity dis-

tribution over the helght at the entry to the lattice. With a nonuni- w -
form velocity distribution over the height at the entry the tip losses DA
increase. In this comnection it should be remarked that the use of

overls.p28 in the real lattices of turbomachines leads to a Sharp in- o S—
crease in the tip losses.

In cylindrical lattices, the character of the tip phenomens changes
somewhat. Because of the change of the pitch of the profile over the
radius and the occurrence of a radial pressure gradient, the symmetry of
the vortices arrangement is disturbed. Both vortices are displaced
along the radius from the casing toward the hub of the annular lattice._

2714 1g assumed that all fundamental geometrical parameters of the
lattices compared remaln the same (pitch, setting angle, and height of
blades). R

28By overlap is meant the difference in heights of two neighboring
lattices. As a rule the height of the rotating lattice is chosen to be
greater than the helght of the guide lattice.
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The intensity of the upper vortex thereby increases, while that of the
lower decreases (fig. 7-72). The radial pressure gradient in an annular
lattice is the cause of the additional losses of energy since the pe-
ripheral flows in the boundary layer are increased by such gradient.

In conclusion it should be emphasized that, for lattices with small
relative height, the value of the optimum pitch must be determined after
account has been tsken of the tip phenomena. The optimum pitch may de-
crease in comparison with that of a plane lattice.

Classification of the Losses in Lattices

The results of theoretical aﬁd experimentael investigations consid-

ered in this chapter of the flow of a gas through turblne lattices per-._.

mit classifying the energy losses in lattices asccording to the following
scheme:

A. Profile loases (in the plane lattice)
(1) Losses by friction in the boundary layer on the profile
(2) Vorticity losses by the separation of the flow or the profile

(3) Vorticity losses behind the trailing edge (edge losses)

B. Losses in three-dimensional lattices (in addition

to those of group A)

(1) Losses produced by friction at the bounding walls of the lat-
tice over the. height and due to peripheral (secondary) flows in

the boundary layers

(2) Losses in the thickened layers'on_the_Back of the blade and
vorticity losses due to separation of the layer at the tips and

the formation of vortices
C. Wave losses (in addition to those of groups A and B at
near. sonic and supersonic velocities)
In the general case, for the investigation of lattices of turbine

stages under actual conditions, there are added the losses arising from
the unsteadiness of the flow and the heat losses (when cooling is

employed).

L9BE



NACA TM 1393 77

As was stated above, only the friction losses in the lattice can be
determined by computation at the present time. The theoretical methods
of computing a potential flow through a lattlce and the semiempirical
methods of computing the boundary layer permit solving this part of the
problem with satisfactory eccuracy. The total losses in a lattice ca&n ™~
be determined only experimentally. The physically evident comnection
between the geometrical parameters of the profile and lattice and the
magnitude of the losses does not at the present time have an exact math-
ematical expression.

Translated by S. Reiss
National Advisory Committee

for Aeronautics ' _
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(a) Profile of impulse blade.

(b) Hodograph.
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(¢) Distribution of relative velocities
over profile.

Figure T-4. - Flow of ideal incompressible £luid through
impulse lattice.
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Flgure 7~10. - Computation of a lattice
by the method of G. B. Samollovich.
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Figure 7-16. - Scheme of electrical model of flow
with circulation. Measurement of velocities.
1, probe with two needles; 2, amplifier; 3, rectifiler;
4, galvenometer; ----, equipotential lines.
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Figure T-24. ~ Spectra of the flow of air through
a reaction lattice at supersonic velocitiles.
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Figure T-50. - Spectra of air flow through reaction lattlce at mear sonic and
superaoz%c velocities. Relebive piteh T = 0.543; extit angle of profile
an = 15 52' .
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Figure T-50. - Contluded. OSpectrs of air £low through reaction lattice at near
sonlc and supersonic veloclties. Relative plitch t = 0.543; exit angle of
profile Bo, = 15°52'.
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Figure 7-51. ~ Spectre of air flow through
reaction lettice at supersonic velocities.
Relative pitch of profile T = 0.86; exit
angle of profile Bn, = 15°52°'.
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Figure T7-51. -~ Concluded. Spectra of slr
flow through reaction lattice at super-
sonic velocitlies. Relative pitch of
profile T = 0.86; exit angle of profile

Bopn = 15952°.
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Figure 7-58. - Scheme of a supersonlec flow about a lattice.

sub |

26T HL VOVN

g2l




126

NACA TM 1393

(£) My = L.42.

Filgure T7-59. - Alr flow spectre through impulse lettice
at near sonic and supersonic velocities,

loge



oBejy

NACA TM 1393

¥

3

S 03

S |3
m I...=-... \\. \
2 N
) Ward N
! X4 -~ ™y m
- =+
4 Sy
m IN UIZI na m
- @
=
-5 &
l{ = m

oS - S
~
= Y ———— L)

« T =4 S

h. ~ \MI/ WM,
SN = 2
0 e i i
0 DR RN M.L 1
. 0 iE S
S Y I
Q| |
S|xl Qi
n M*IM o
¥ _ﬂ_f-r e
b I

o0 _ N
o . ——
S5k )

& DR SEE e
S o ——de ¢
ey E

o b lllll” "

A - ©

B

/ I|Ilm Fmv
S r— e
%.u %
-——-i%
< =N
e

[+

9w o

X5 )

X

127

Figure 7-80. - Pressure distribution over the profile of en impulse lattice at supersomic velocities.
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Figure 7-61. - Spectra of supersonic

Plow about a lattice of pletes;
M2 = 1.42.
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Figure 7-62. - Loss coefficlent as a function of Mz(z-fl) .
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Figure 7-63. - Determination of the sngle of deflection of
the flow behind the throat of a lattice.

Flgure 7-64. - Computation of the angle of deflection behind the
throat by the method of characteristics. - -
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Figure T-67. - Wakes of tip vortices
in interblade channel.
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Figure 7-70. - Effect of the
entry angle on the stagnation
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